Wong Cheng Lee

Learn More
Efficient synchronization and selection of cells at different stages of the cell replication cycle facilitates both fundamental research and development of cell cycle-targeted therapies. Current chemical-based synchronization methods are unfavorable as these can disrupt cell physiology and metabolism. Microfluidic systems developed for physical cell(More)
Blood, a complex biological fluid, comprises 45% cellular components suspended in protein rich plasma. These different hematologic components perform distinct functions in vivo and thus the ability to efficiently fractionate blood into its individual components has innumerable applications in both clinical diagnosis and biological research. Yet, processing(More)
The capacity to produce therapeutically relevant quantities of multipotent mesenchymal stromal cells (MSCs) via in vitro culture is a common prerequisite for stem cell-based therapies. Although culture expanded MSCs are widely studied and considered for therapeutic applications, it has remained challenging to identify a unique set of characteristics that(More)
  • 1