Wondi Mersie

Learn More
Knowledge of wetland hydrology, soil redox potential, pH, and temperature dynamics are key components required to understand the capacity of tidal wetlands to function, in particular to attenuate agrichemicals. In a freshwater tidal wetland along the James River in Virginia, USA, redox potential, pH, water-table level, and soil temperature were monitored(More)
The half-lives, degradation rates, and metabolite formation patterns of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] were determined in an anaerobic wetland soil incubated at 24 degrees C for 112 d. At 0, 7, 14, 28, 42, 56, and 112 d, the soil(More)
A study was conducted to determine the half-life (t1/2), degradation rate, and metabolites of metolachlor in a water-sediment system and in soil with and without switchgrass. Metolachlor degradation in a laboratory was determined in sediment from Bojac sandy loam soil incubated at 24 degrees C. The study also was conducted in a greenhouse on tilted beds(More)
An interlaboratory study was conducted to assess the suitability of C18 solid-phase extraction disks to retain and ship different pesticides from water samples. Surface and deionized water samples were fortified with various pesticides and extracted using C18 disks. Pesticides were eluted from disks and analyzed in-house, or disks were sent to another(More)
An interlaboratory comparison was conducted in 1997 and 1998 to examine the feasibility of using C18 solid-phase extraction disks (Empore) to simultaneously determine the herbicides atrazine, bromacil, and metolachlor and the insecticide chlorpyrifos in water samples. A common fortification source and sample processing procedure were used to minimize(More)
A continuation of an earlier interlaboratory comparison was conducted (1) to assess solid-phase extraction (SPE) using Empore disks to extract atrazine, bromacil, metolachlor, and chlorpyrifos from various water sources accompanied by different sample shipping and quantitative techniques and (2) to compare quantitative results of individual laboratories(More)
An interlaboratory study was conducted at 8 locations to assess the stability of pesticides on solid-phase extraction (SPE) disks after incubation at various temperatures and for various time intervals. Deionized water fortified with selected pesticides was extracted by using 2 types of SPE filtration disks (Empore C18 and Speedisk C18XF), and after(More)
Through water erosion and runoff, sediment-adsorbed atrazine can undergo sedimentation and accumulation at the bottom of water bodies and become potential sources of atrazine to the water column. The purpose of this study is to determine the fate and release of atrazine ((14)C) to the water column from two simulated undisturbed submerged sediments at two(More)
The inheritance of ozone (O(3)) insensitivity in common bean (Phaseolus vulgaris L.) was evaluated using F(2) and F(3) populations under ambient conditions. This study was conducted over two growing seasons (1987, 1988) at Virginia State University, Randolph Research Farm, Petersburg, Virginia. Two populations were obtained by crossing insensitive plant(More)
An interlaboratory study was conducted to compare pesticide recovery from Empore C(18) and Speedisks C(18)XF solid phase extraction disks after shipping. Four pesticides were used for the comparison of the two disk extraction materials: atrazine, diazinon, metolachlor, and tebuconazole. These pesticides were chosen to provide a range of physiochemical(More)