Won-Hwa Kang

  • Citations Per Year
Learn More
Recent studies have shown that global gene expression during oxidative stress in Schizosaccharomyces pombe is regulated by stress-induced activation and binding of Csx1 to atf1(+) mRNA. However, the kinase responsible for the activation of Csx1 has not been identified. Here, we describe, for the first time, that Csx1 is phosphorylated by S. pombe LAMMER(More)
In eukaryotes, LAMMER kinases are involved in various cellular events, including the cell cycle. However, no attempt has been made to investigate the mechanisms that underlie the involvement of LAMMER kinase. In this study, we performed a functional analysis of LAMMER kinase using the fission yeast, Schizosaccharomyces pombe. FACS analyses revealed that(More)
BACKGROUND AIMS Stromal vascular fractions (SVF) from adipose tissue have heterogeneous cell populations, and include multipotent adipose-derived stem cells. The advantages of using of SVF include the avoidance of an additional culture period, a reduced risk of extensive cell contamination, and cost-effectiveness. METHODS Unilateral 20-mm mid-diaphyseal(More)
Previously, we reported that the LAMMER kinase homolog, Lkh1, is a negative regulator of filamentous growth and asexual flocculation in the fission yeast, Schizosaccharomyces pombe. Here, we report that the lkh1(+) null mutant is sensitive to oxidative stress because of a reduction in the expression of genes for antioxidant enzymes such as catalase(More)
Disruption of the fission yeast LAMMER kinase, Lkh1, gene resulted in diverse phenotypes, including adhesive filamentous growth and oxidative stress sensitivity, but an exact cellular function had not been assigned to Lkh1. Through an in vitro pull-down approach, a transcriptional repressor, Tup12, was identified as an Lkh1 binding partner. Interactions(More)
  • 1