Learn More
Changes in the levels of Ca(2+), pH, and reactive oxygen species (ROS) are recognized as key cellular regulators involved in diverse physiological and developmental processes in plants. Critical to understanding how they exert such widespread control is an appreciation of their spatial and temporal dynamics at levels from organ to organelle and from seconds(More)
Their sessile lifestyle means that plants have to be exquisitely sensitive to their environment, integrating many signals to appropriate developmental and physiological responses. Stimuli ranging from wounding and pathogen attack to the distribution of water and nutrients in the soil are frequently presented in a localized manner but responses are often(More)
Systemic signaling pathways enable multicellular organisms to prepare all of their tissues and cells to an upcoming challenge that may initially only be sensed by a few local cells. They are activated in plants in response to different stimuli including mechanical injury, pathogen infection, and abiotic stresses. Key to the mobilization of systemic signals(More)
The nodulin 26-like intrinsic protein family is a group of highly conserved multifunctional major intrinsic proteins that are unique to plants, and which transport a variety of uncharged solutes ranging from water to ammonia to glycerol. Based on structure-function studies, the NIP family can be subdivided into two subgroups (I and II) based on the identity(More)
Nodulin 26 intrinsic proteins (NIPs) are plant-specific, highly conserved water and solute transport proteins with structural and functional homology to soybean nodulin 26. Arabidopsis thaliana contains nine NIP genes. In this study, it is shown that one of these, AtNIP2;1, is exquisitely sensitive to water logging and anoxia stress. Based on quantitative(More)
In this study, we have isolated a rice (Oryza sativa L.) glutamate decarboxylase (RicGAD) clone from a root cDNA library, using a partial Arabidopsis thaliana GAD gene as a probe. The rice root cDNA library was constructed with mRNA, which had been derived from the roots of rice seedlings subjected to phosphorus deprivation. Nucleotide sequence analysis(More)
BACKGROUND CONTEXT Most surgeons have thought that posterior decompression is necessary to treat isthmic spondylolisthesis with leg pain. However, the surgical procedure not only requires wide muscle dissection but can also lead to spinal instability. The authors' treatment concept for isthmic spondylolisthesis is one-stage anterior reduction and posterior(More)
Many plant response systems are linked to complex dynamics in signaling molecules such as Ca(2+) and reactive oxygen species (ROS) and to pH. Regulatory changes in these molecules can occur in the timeframe of seconds and are often limited to specific subcellular locales. Thus, to understand how Ca(2+) , ROS and pH form part of plants' regulatory networks,(More)
Plant nodulin-26 intrinsic proteins (NIPs) are members of the aquaporin superfamily that serve as multifunctional transporters of uncharged metabolites. In Arabidopsis thaliana, a specific NIP pore subclass, known as the NIP II proteins, is represented by AtNIP5;1 and AtNIP6;1, which encode channel proteins expressed in roots and leaf nodes, respectively,(More)
Plants exhibit rapid, systemic signaling systems that allow them to coordinate physiological and developmental responses throughout the plant body, even to highly localized and quickly changing environmental stresses. The propagation of these signals is thought to include processes ranging from electrical and hydraulic networks to waves of reactive oxygen(More)