Learn More
Distributionally robust optimization is a paradigm for decision-making under uncertainty where the uncertain problem data is governed by a probability distribution that is itself subject to uncertainty. The distribution is then assumed to belong to an ambiguity set comprising all distributions that are compatible with the decision maker's prior information.(More)
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract. We study a variant of the pessimistic bilevel optimization problem,(More)
Linear stochastic programming provides a flexible toolbox for analyzing real-life decision situations, but it can become computationally cumbersome when recourse decisions are involved. The latter are usually modeled as decision rules, i.e., functions of the uncertain problem data. It has recently been argued that stochastic programs can quite generally be(More)
Stochastic programming provides a versatile framework for decision-making under uncertainty, but the resulting optimization problems can be computationally demanding. It has recently been shown that primal and dual linear decision rule approximations can yield tractable upper and lower bounds on the optimal value of a stochastic program. Unfortunately,(More)