Learn More
The effects of lesions, receptor blocking, electrical self-stimulation, and drugs of abuse suggest that midbrain dopamine systems are involved in processing reward information and learning approach behavior. Most dopamine neurons show phasic activations after primary liquid and food rewards and conditioned, reward-predicting visual and auditory stimuli.(More)
Uncertainty is critical in the measure of information and in assessing the accuracy of predictions. It is determined by probability P, being maximal at P = 0.5 and decreasing at higher and lower probabilities. Using distinct stimuli to indicate the probability of reward, we found that the phasic activation of dopamine neurons varied monotonically across the(More)
Recent neurophysiological studies reveal that neurons in certain brain structures carry specific signals about past and future rewards. Dopamine neurons display a short-latency, phasic reward signal indicating the difference between actual and predicted rewards. The signal is useful for enhancing neuronal processing and learning behavioral reactions. It is(More)
Many behaviors are affected by rewards, undergoing long-term changes when rewards are different than predicted but remaining unchanged when rewards occur exactly as predicted. The discrepancy between reward occurrence and reward prediction is termed an 'error in reward prediction'. Dopamine neurons in the substantia nigra and the ventral tegmental area are(More)
The functions of rewards are based primarily on their effects on behavior and are less directly governed by the physics and chemistry of input events as in sensory systems. Therefore, the investigation of neural mechanisms underlying reward functions requires behavioral theories that can conceptualize the different effects of rewards on behavior. The(More)
Associative learning enables animals to anticipate the occurrence of important outcomes. Learning occurs when the actual outcome differs from the predicted outcome, resulting in a prediction error. Neurons in several brain structures appear to code prediction errors in relation to rewards, punishments, external stimuli, and behavioral reactions. In one(More)
1. Previous studies have shown that dopamine (DA) neurons respond to stimuli of behavioral significance, such as primary reward and conditioned stimuli predicting reward and eliciting behavioral reactions. The present study investigated how these responses develop and vary when the behavioral significance of stimuli changes during different stages of(More)
Many lesion studies report an amazing variety of deficits in behavioral functions that cannot possibly be encoded in great detail by the relatively small number of midbrain dopamine neurons. Although hoping to unravel a single dopamine function underlying these phenomena, electrophysiological and neurochemical studies still give a confusing, mutually(More)