Wolfram Kress

Learn More
Myotonic dystrophy (DM), the most common form of muscular dystrophy in adults, can be caused by a mutation on either chromosome 19q13 (DM1) or 3q21 (DM2/PROMM). DM1 is caused by a CTG expansion in the 3' untranslated region of the dystrophia myotonica-protein kinase gene (DMPK). Several mechanisms have been invoked to explain how this mutation, which does(More)
We report heterozygous mutations in the genes encoding either type I or type II transforming growth factor β receptor in ten families with a newly described human phenotype that includes widespread perturbations in cardiovascular, craniofacial, neurocognitive and skeletal development. Despite evidence that receptors derived from selected mutated alleles(More)
BACKGROUND Myotonic dystrophy types 1 (DM1) and 2 (DM2/proximal myotonic myopathy PROMM) are dominantly inherited disorders with unusual multisystemic clinical features. The authors have characterized the clinical and molecular features of DM2/PROMM, which is caused by a CCTG repeat expansion in intron 1 of the zinc finger protein 9 (ZNF9) gene. METHODS(More)
OBJECTIVE Centronuclear myopathy (CNM) is a rare congenital myopathy characterized by prominence of central nuclei on muscle biopsy. CNM has been associated with mutations in MTM1, DNM2, and BIN1 but many cases remain genetically unresolved. RYR1 encodes the principal sarcoplasmic reticulum calcium release channel and has been implicated in various(More)
Cardio-facio-cutaneous (CFC) and Costello syndrome (CS) are congenital disorders with a significant clinical overlap. The recent discovery of heterozygous mutations in genes encoding components of the RAS-RAF-MAPK pathway in both CFC and CS suggested a similar underlying pathogenesis of these two disorders. While CFC is heterogeneous with mutations in BRAF,(More)
X-linked myotubular myopathy (XLMTM; MIM# 310400) is a severe congenital muscle disorder caused by mutations in the MTM1 gene. This gene encodes a dual-specificity phosphatase named myotubularin, defining a large gene family highly conserved through evolution (which includes the putative anti-phosphatase Sbf1/hMTMR5). We report 29 mutations in novel cases,(More)
OBJECTIVE To compare muscle imaging findings in different subtypes of myofibrillar myopathies (MFM) in order to identify characteristic patterns of muscle alterations that may be helpful to separate these genetic heterogeneous muscular disorders. METHODS Muscle imaging and clinical findings of 46 patients with MFM were evaluated (19 desminopathy, 12(More)
We evaluated muscle biopsies from 57 patients with genetically confirmed myotonic dystrophy type 2/proximal myotonic myopathy (DM2/PROMM). Light microscopy showed myopathic together with "denervation-like" changes in almost all biopsies obtained from four different muscles: increased fiber size variation, internal nuclei, small angulated fibers, pyknotic(More)
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant muscular disorder with a wide clinical variability. Contractions of the D4Z4 macrosatellite repeat on chromosome 4q35 are the molecular basis of the pathophysiology. Recently, in a subset of patients without D4Z4 repeat contractions, variants in the SMCHD1 gene have been identified that(More)