Learn More
Mobile robot localization is the problem of determining a robot's pose from sensor data. This article presents a family of probabilistic localization algorithms known as Monte Carlo Localization (MCL). MCL algorithms represent a robot's belief by a set of weighted hypotheses (samples), which approximate the posterior under a common Bayesian formulation of(More)
To navigate reliably in indoor environments, a mobile robot must know where it is. Thus, reliable position estimation is a key problem in mobile robotics. We believe that prob-abilistic approaches are among the most promising candidates to providing a comprehensive and real-time solution to the robot localization problem. However, current methods still face(More)
— Recently, Rao-Blackwellized particle filters have been introduced as an effective means to solve the simultaneous localization and mapping problem. This approach uses a particle filter in which each particle carries an individual map of the environment. Accordingly, a key question is how to reduce the number of particles. In this paper, we present(More)
This paper describes the dynamic window a p proach t o reactive collision avoidance for mobile robots equipped with synchro-drives. The a p proach i s d erived directly from the motion dynamics of the robot and i s t herefore particularly well-suited for robots o perating a t high speed. It diiers from previous approaches in that t he search for commands(More)
— In this paper, we present a novel benchmark for the evaluation of RGB-D SLAM systems. We recorded a large set of image sequences from a Microsoft Kinect with highly accurate and time-synchronized ground truth camera poses from a motion capture system. The sequences contain both the color and depth images in full sensor resolution (640 × 480) at video(More)
— This paper presents an integrated approach to exploration, mapping, and localization. Our algorithm uses a highly efficient Rao-Blackwellized particle filter to represent the posterior about maps and poses. It applies a decision-theoretic framework which simultaneously considers the uncertainty in the map and in the pose of the vehicle to evaluate(More)
Localization, that is the estimation of a robot's location from sensor data, is a fundamental problem in mobile robotics. This papers presents a version of Markov localization which provides accurate position estimates and which is tailored towards dynamic environments. The key idea of Markov localization is to maintain a probability density over the space(More)
— Recently Rao-Blackwellized particle filters have been introduced as effective means to solve the simultaneous localization and mapping (SLAM) problem. This approach uses a particle filter in which each particle carries an individual map of the environment. Accordingly, a key question is how to reduce the number of particles. In this paper we present(More)
This paper addresses the problem of building large-scale geometric maps of indoor environments with mobile robots. It poses the map building problem as a constrained, probabilistic maximum-likelihood estimation problem. It then devises a practical algorithm for generating the most likely map from data, along with the most likely path taken by the robot.(More)
This paper presents a new algorithm for mobile robot lo-calization, called Monte Carlo Localization (MCL). MCL is a version of Markov localization, a family of probabilis-tic approaches that have recently been applied with great practical success. However, previous approaches were either computationally cumbersome (such as grid-based approaches that(More)