Wolfram Burgard

Learn More
In this paper, we present a novel benchmark for the evaluation of RGB-D SLAM systems. We recorded a large set of image sequences from a Microsoft Kinect with highly accurate and time-synchronized ground truth camera poses from a motion capture system. The sequences contain both the color and depth images in full sensor resolution (640 × 480) at video(More)
This paper describes the dynamic window approach to reactive collision avoidance for mobile robots equipped with synchro-drives. The approach is derived directly from the motion dynamics of the robot and is therefore particularly well-suited for robots operating at high speed. It di ers from previous approaches in that the search for commands controlling(More)
Mobile robot localization is the problem of determining a robot’s pose from sensor data. This article presents a family of probabilistic localization algorithms known as Monte Carlo Localization (MCL). MCL algorithms represent a robot’s belief by a set of weighted hypotheses (samples), which approximate the posterior under a common Bayesian formulation of(More)
SEPTEMBER 2005 110 Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development Oxford University Press, 2004. ISBN: 0195157826. US$101.00. Assembly is the process by which parts become products that do useful things. Therefore it is fundamental to the work of every mechanical engineer. Yet the design of assemblies and the process of(More)
Three-dimensional models provide a volumetric representation of space which is important for a variety of robotic applications including flying robots and robots that are equipped with manipulators. In this paper, we present an open-source framework to generate volumetric 3D environment models. Our mapping approach is based on octrees and uses probabilistic(More)
Recently, Rao-Blackwellized particle filters (RBPF) have been introduced as an effective means to solve the simultaneous localization and mapping problem. This approach uses a particle filter in which each particle carries an individual map of the environment. Accordingly, a key question is how to reduce the number of particles. In this paper, we present(More)
To navigate reliably in indoor environments, a mobile robot must know where it is. Thus, reliable position estimation is a key problem in mobile robotics. We believe that probabilistic approaches are among the most promising candidates to providing a comprehensive and real-time solution to the robot localization problem. However, current methods still face(More)
We present an approach to simultaneous localization and mapping (SLAM) for RGB-D cameras like the Microsoft Kinect. Our system concurrently estimates the trajectory of a hand-held Kinect and generates a dense 3D model of the environment. We present the key features of our approach and evaluate its performance thoroughly on a recently published dataset,(More)
This paper presents a new algorithm for mobile robot localization, called Monte Carlo Localization (MCL). MCL is a version of Markov localization, a family of probabilistic approaches that have recently been applied with great practical success. However, previous approaches were either computationally cumbersome (such as grid-based approaches that represent(More)
Many popular problems in robotics and computer vision including various types of simultaneous localization and mapping (SLAM) or bundle adjustment (BA) can be phrased as least squares optimization of an error function that can be represented by a graph. This paper describes the general structure of such problems and presents go, an open-source C++ framework(More)