Wolfgang Renz

Learn More
Interest in cardiovascular magnetic resonance (CMR) at 7 T is motivated by the expected increase in spatial and temporal resolution, but the method is technically challenging. We examined the feasibility of cardiac chamber quantification at 7 T. A stack of short axes covering the left ventricle was obtained in nine healthy male volunteers. At 1.5 T,(More)
An eight-rung, 3T degenerate birdcage coil (DBC) was constructed and evaluated for accelerated parallel excitation of the head with eight independent excitation channels. Two mode configurations were tested. In the first, each of the eight loops formed by the birdcage was individually excited, producing an excitation pattern similar to a loop coil array. In(More)
The interest in performing vascular interventions under magnetic resonance (MR) guidance has initiated the evaluation of the potential hazard of long conductive wires and catheters. The objective of this work is to present a simple analytical approach to address this concern and to demonstrate the agreement with experimental results. The first hypothesis is(More)
To implement, examine, and compare three multichannel transmit/receive coil configurations for cardiovascular MR (CMR) at 7T. Three radiofrequency transmit-receive (TX/RX) coils with 4-, 8-, and 16-coil elements were used. Ten healthy volunteers (seven males, age 28 ± 4 years) underwent CMR at 7T. For all three RX/TX coils, 2D CINE FLASH images of the heart(More)
PURPOSE To design and evaluate a four-channel cardiac transceiver coil array for functional cardiac imaging at 7T. MATERIALS AND METHODS A four-element cardiac transceiver surface coil array was developed with two rectangular loops mounted on an anterior former and two rectangular loops on a posterior former. specific absorption rate (SAR) simulations(More)
Skin sodium (Na(+) ) storage, as a physiologically important regulatory mechanism for blood pressure, volume regulation and, indeed, survival, has recently been rediscovered. This has prompted the development of MRI methods to assess Na(+) storage in humans ((23) Na MRI) at 3.0 T. This work examines the feasibility of high in-plane spatial resolution (23)(More)
The objective of this work is to design, examine and apply an eight channel transmit/receive coil array tailored for cardiac magnetic resonance imaging at 7.0 T that provides image quality suitable for clinical use, patient comfort, and ease of use. The cardiac coil array was designed to consist of a planar posterior section and a modestly curved anterior(More)
PURPOSE To design, evaluate, and apply a 2D 16-channel transmit/receive (TX/RX) coil array tailored for cardiac magnetic resonance imaging (MRI) at 7.0 T. MATERIALS AND METHODS The cardiac coil array consists of two sections each using eight elements arranged in a 2 × 4 array. Radiofrequency (RF) safety was validated by specific absorption rate (SAR)(More)
PURPOSE To design and evaluate a modular transceiver coil array with 32 independent channels for cardiac MRI at 7.0T. METHODS The modular coil array comprises eight independent building blocks, each containing four transceiver loop elements. Numerical simulations were used for B1 (+) field homogenization and radiofrequency (RF) safety validation. RF(More)