Learn More
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal(More)
beta-Glucosyltransferase (BGT) is a DNA-modifying enzyme encoded by bacteriophage T4 which catalyses the transfer of glucose (Glc) from uridine diphosphoglucose (UDP-Glc) to 5-hydroxymethylcytosine (5-HMC) in double-stranded DNA. The glucosylation of T4 phage DNA is part of a phage DNA protection system aimed at host nucleases. We previously reported the(More)
Infection of Escherichia coli by bacteriophage T4 leads to the expression of three phage mono-ADP-ribosyltransferases (namely, Alt, ModA, and ModB), each of which modifies a distinct group of host proteins. To improve understanding of these interactions and their consequences for the T4 replication cycle, we used high-resolution two-dimensional gel(More)
Bacteriophage T4 alpha- and beta-glucosyltransferases link glucosyl units to the 5-HMdC residues of its DNA. The monoglucosyl group in alpha-linkage predominates over the one in beta linkage. Having recently reported on the nucleotide sequence of gene alpha gt (1) we now determined the nucleotide sequence of gene beta gt. The genes were each cloned on a(More)
We report on the construction of promoter probe vector pKWIII, useful in cloning and analyzing strong promoters for Escherichia coli RNA polymerase. Also T4 early promoters that proved to be difficult to clone with other vectors could be tested. The promoter activities obtained with this convenient and nonradioactive system largely correspond to those(More)
Bacteriophage T4 codes at least for two ADP-ribosylating activities, the 76 kDa Alt and the 24 kDa Mod gene products. The main target for both enzymes is the host RNA polymerase. We cloned and sequenced the alt gene and overexpressed the corresponding enzyme. The recombinant protein shows ADP-ribosylating activities in vitro, as had been described earlier(More)
Bacteriophage T4 beta-glucosyltransferase (EC 2.4.1.27) catalyses the transfer of glucose from uridine diphosphoglucose to hydroxymethyl groups of modified cytosine bases in T4 duplex DNA forming beta-glycosidic linkages. The enzyme forms part of a phage DNA protection system. We have solved and refined the crystal structure of recombinant(More)
beta-Glucosyltransferase (BGT) is a DNA-modifying enzyme encoded by bacteriophage T4 that transfers glucose from uridine diphosphoglucose to 5-hydroxymethyl cytosine bases of phage T4 DNA. We report six X-ray structures of the substrate-free and the UDP-bound enzyme. Four also contain metal ions which activate the enzyme, including Mg(2+) in forms 1 and 2(More)