Learn More
The antennal lobes (ALs) are the primary olfactory centers in the insect brain. In the AL of the honeybee, olfactory glomeruli receive input via four antennal sensory tracts (T1-4). Axons of projection neurons (PNs) leave the AL via several antenno-cerebral tracts (ACTs). To assign the input-output connectivity of all glomeruli, we investigated the spatial(More)
Despite the importance of the insect nervous system for functional and developmental neuroscience, descriptions of insect brains have suffered from a lack of uniform nomenclature. Ambiguous definitions of brain regions and fiber bundles have contributed to the variation of names used to describe the same structure. The lack of clearly determined neuropil(More)
A striking commonality across insects and vertebrates is the recurring presence of parallel olfactory subsystems, suggesting that such an organization has a highly adaptive value. Conceptually, two different categories of parallel systems must be distinguished. In one, specific sensory organs or processing streams analyze different chemical stimuli(More)
Recent studies have shown that the behavioral performance of adult honey bees is influenced by the temperature experienced during pupal development. Here we explore whether there are temperature-mediated effects on the brain. We raised pupae at different constant temperatures between 29 and 37 degrees C and performed neuroanatomical analyses of the adult(More)
Feeding behaviour is a complex functional system that relies on external signals and the physiological state of the animal. This is also the case in ants as they vary their feeding behaviour according to food characteristics, environmental conditions and - as they are social insects - to the colony's requirements. The biogenic amine serotonin (5-HT) was(More)
Ants have a well-developed olfactory system, and pheromone communication is essential for regulating social life within their colonies. We compared the organization of primary olfactory centers (antennal lobes, ALs) in the brain of two closely related species of leaf-cutting ants (Atta vollenweideri, Atta sexdens). Both species express a striking size(More)
Ants rely heavily on olfaction for communication and orientation. Here we provide the first detailed structure-function analyses within an ant's central olfactory system asking whether in the carpenter ant, Camponotus floridanus, the olfactory pathway exhibits adaptations to processing many pheromonal and general odors. Using fluorescent tracing, confocal(More)
In their natural environment, animals face complex and highly dynamic olfactory input. Thus vertebrates as well as invertebrates require fast and reliable processing of olfactory information. Parallel processing has been shown to improve processing speed and power in other sensory systems and is characterized by extraction of different stimulus parameters(More)
The distribution of f-actin stained by fluorescent phalloidin was investigated in the brain of several insect species, with a special focus on the mushroom body. For localizing f-actin in identified neurons and at synapses, additional staining with fluorescent dextrans and anti-synapsin I immunostaining was employed. Intense f-actin staining was(More)
Ants of the tribe Attini are characterized by their obligate cultivation of symbiotic fungi. In addition to the complex chemical communication system of ants in general, substrate selection and fungus cultivation pose high demands on the olfactory system of the Attini. Indeed, behavioral studies have shown a rich diversity of olfactory-guided behaviors and(More)