Learn More
Neutrophils are the first line of defense at the site of an infection. They encounter and kill microbes intracellularly upon phagocytosis or extracellularly by degranulation of antimicrobial proteins and the release of Neutrophil Extracellular Traps (NETs). NETs were shown to ensnare and kill microbes. However, their complete protein composition and the(More)
Bacterial infection often results in the formation of tissue abscesses, which represent the primary site of interaction between invading bacteria and the innate immune system. We identify the host protein calprotectin as a neutrophil-dependent factor expressed inside Staphylococcus aureus abscesses. Neutrophil-derived calprotectin inhibited S. aureus growth(More)
Homeotic mutants have been useful for the study of animal development. Such mutants are also known in plants. The isolation and molecular analysis of several homeotic genes in Antirrhinum majus provide insights into the underlying molecular regulatory mechanisms of flower development. A model is presented of how the characteristic sequential pattern of(More)
Accumulation of myeloid-derived suppressor cells (MDSCs) associated with inhibition of dendritic cell (DC) differentiation is one of the major immunological abnormalities in cancer and leads to suppression of antitumor immune responses. The molecular mechanism of this phenomenon remains unclear. We report here that STAT3-inducible up-regulation of the(More)
MRP14 (S100A9) is the major calcium-binding protein of neutrophils and monocytes. Targeted gene disruption reveals an essential role of this S100 protein for transendothelial migration of phagocytes. The underlying molecular mechanism comprises major alterations of cytoskeletal metabolism. MRP14, in complex with its binding partner MRP8 (S100A8), promotes(More)
OBJECTIVES Infiltration of synovial tissue by neutrophils is crucial in rheumatoid arthritis (RA), psoriatic arthritis (PsA) and seronegative arthritis (SA). Altered vascular function and endothelial activation are important in PsA. S100A12 (EN-RAGE) is secreted by activated granulocytes and binds to the receptor for advanced glycation end products, which(More)
Our previous study presented evidence that the inflammation-related S100A9 gene is significantly upregulated in the brains of Alzheimer's disease (AD) animal models and human AD patients. In addition, experiments have shown that knockdown of S100A9 expression improves cognition function in AD model mice (Tg2576), and these animals exhibit reduced amyloid(More)
  • 1