Learn More
Polyethylenimine (PEI) is a cationic polymer which can be complexed with DNA. PEI-DNA complexes can be used for in vitro and in vivo gene delivery approaches. The excess of positive surface charges enhances the association of the complex with the plasmamembrane of cells and facilitates their uptake by endocytosis. The intracellular transport pathway from(More)
The peptidyl-prolyl cis/trans isomerase Pin1 has been implicated in malignant transformation in multiple studies, however, little is known about its potential impact in head and neck cancer. This study evaluates the role of Pin1 in head and neck squamous cell carcinomas (HNSCCs). Pin1 expression and level of phosphorylation was evaluated by Western blot(More)
Peroxisome proliferator-activated receptor (PPARs) modulate target gene expression in response to unsaturated fatty acid ligands, such as arachidonic acid (AA). Here, we report that the AA metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) activates the ligand-dependent activation domain (AF2) of PPARbeta/delta in vivo, competes with synthetic agonists in(More)
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that modulate target gene expression in response to natural fatty acid ligands and synthetic agonists. It is noteworthy that all trans-retinoic acid (atRA) has recently been reported to act as a ligand for PPARbeta/delta, to activate its(More)
It has previously been reported that transcription in vivo of the tRNA(Sec) gene requires three promoter elements, a PSE and a TATA-box upstream of the coding region which are functionally interchangeable with the U6 snRNA gene counterparts and an internal B-block, resembling that of classical tRNA genes (1). We have established an in vitro transcription(More)
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors with essential functions in lipid, glucose and energy homeostasis, cell differentiation, inflammation and metabolic disorders, and represent important drug targets. PPARs heterodimerize with retinoid X receptors (RXRs) and can form transcriptional activator or repressor complexes at(More)
Protein fractions containing TFIIA, a transcription factor known to be involved in transcription initiation by RNA polymerase II and 5'-regulated polymerase III genes (e.g. U6), were tested for their role in in vitro transcription of classical pol III genes. These fractions were shown to stimulate a basal transcription system, reconstituted from highly(More)
The peroxisome proliferator-activated receptor-beta (PPARbeta) has been implicated in tumorigenesis, but its precise role remains unclear. Here, we show that the growth of syngeneic Pparb wild-type tumors is impaired in Pparb(-/-) mice, concomitant with a diminished blood flow and an abundance of hyperplastic microvascular structures. Matrigel plugs(More)
Besides its established functions in intermediary metabolism and developmental processes, the nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) has a less defined role in tumorigenesis. In the present study, we have identified a function for PPARβ/δ in cancer cell invasion. We show that two structurally divergent inhibitory ligands(More)
The general human RNA polymerase III transcription factor (TF) IIIC1 has hitherto been ill defined with respect to the polypeptides required for reconstitution of its activity. Here we identify Homo sapiens TFIIIB" (HsBdp1) as an essential component of hTFIIIC1 and hTFIIIC1-like activities. Several forms of HsBdp1 are described. The 250-kDa form of HsBdp1,(More)