Learn More
The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. The goals of the project include: fostering collaborative development and widespread use of innovative software, reducing barriers to entry into interdisciplinary scientific research, and promoting the achievement of(More)
MOTIVATION A large choice of tools exists for many standard tasks in the analysis of high-throughput sequencing (HTS) data. However, once a project deviates from standard workflows, custom scripts are needed. RESULTS We present HTSeq, a Python library to facilitate the rapid development of such scripts. HTSeq offers parsers for many common data formats in(More)
We introduce a statistical model for microarray gene expression data that comprises data calibration, the quantification of differential expression, and the quantification of measurement error. In particular, we derive a transformation h for intensity measurements, and a difference statistic Deltah whose variance is approximately constant along the whole(More)
Preface During the past few years, there have been enormous advances in ge-nomics and molecular biology, which carry the promise of understanding the functioning of whole genomes in a systematic manner. The challenge of interpreting the vast amounts of data from microarrays and other high throughput technologies has led to the development of new tools in(More)
We describe Bioconductor infrastructure for representing and computing on annotated genomic ranges and integrating genomic data with the statistical computing features of R and its extensions. At the core of the infrastructure are three packages: IRanges, GenomicRanges, and GenomicFeatures. These packages provide scalable data structures for representing(More)
biomaRt is a new Bioconductor package that integrates BioMart data resources with data analysis software in Bioconductor. It can annotate a wide range of gene or gene product identifiers (e.g. Entrez-Gene and Affymetrix probe identifiers) with information such as gene symbol, chromosomal coordinates, Gene Ontology and OMIM annotation. Furthermore biomaRt(More)
We demonstrate a concept and implementation of a compendium for the classification of high-dimensional data from microarray gene expression profiles. A compendium is an interactive document that bundles primary data, statistical processing methods, figures, and derived data together with the textual documentation and conclusions. Interactivity allows the(More)
Despite our rapidly growing knowledge about the human genome, we do not know all of the genes required for some of the most basic functions of life. To start to fill this gap we developed a high-throughput phenotypic screening platform combining potent gene silencing by RNA interference, time-lapse microscopy and computational image processing. We carried(More)
The analysis of synthetic genetic interaction networks can reveal how biological systems achieve a high level of complexity with a limited repertoire of components. Studies in yeast and bacteria have taken advantage of collections of deletion strains to construct matrices of quantitative interaction profiles and infer gene function. Yet comparable(More)
BACKGROUND Chromatin immunoprecipitation combined with DNA microarrays (ChIP-chip) is a high-throughput assay for DNA-protein-binding or post-translational chromatin/histone modifications. However, the raw microarray intensity readings themselves are not immediately useful to researchers, but require a number of bioinformatic analysis steps. Identified(More)