Learn More
We introduce a statistical model for microarray gene expression data that comprises data calibration, the quantification of differential expression, and the quantification of measurement error. In particular, we derive a transformation h for intensity measurements, and a difference statistic Deltah whose variance is approximately constant along the whole(More)
Differences in gene expression may play a major role in speciation and phenotypic diversity. We examined genome-wide differences in transcription factor (TF) binding in several humans and a single chimpanzee by using chromatin immunoprecipitation followed by sequencing. The binding sites of RNA polymerase II (PolII) and a key regulator of immune responses,(More)
biomaRt is a new Bioconductor package that integrates BioMart data resources with data analysis software in Bioconductor. It can annotate a wide range of gene or gene product identifiers (e.g. Entrez-Gene and Affymetrix probe identifiers) with information such as gene symbol, chromosomal coordinates, Gene Ontology and OMIM annotation. Furthermore biomaRt(More)
MOTIVATION High-density DNA tiling microarrays are a powerful tool for the characterization of complete transcriptomes. The two major analytical challenges are the segmentation of the hybridization signal along genomic coordinates to accurately determine transcript boundaries and the adjustment of the sequence-dependent response of the oligonucleotide(More)
We present a new class discovery method for microarray gene expression data. Based on a collection of gene expression profiles from different tissue samples, the method searches for binary class distinctions in the set of samples that show clear separation in the expression levels of specific subsets of genes. Several mutually independent class distinctions(More)
The demand for predictable timing behavior is characteristic for real-time applications. Experience has shown that this property cannot be achieved by software alone but rather requires support from the processor. This situation is analyzed and mapped to a design rationale for SPEAR (Scalable Processor for Embedded Applications in Real-time Environments), a(More)
Deciphering the impact of genetic variants on gene regulation is fundamental to understanding human disease. Although gene regulation often involves long-range interactions, it is unknown to what extent non-coding genetic variants influence distal molecular phenotypes. Here, we integrate chromatin profiling for three histone marks in lymphoblastoid cell(More)
This paper presents a computer simulation of the three-loop model for the temporal aspects of the generation of visually guided saccadic eye movements. The intention is to reproduce complex experimental reaction time distributions by a simple neural network. The operating elements are artificial but realistic neurones. Four modules are constructed, each(More)
MOTIVATION Proteins work together to drive biological processes in cellular machines. Summarizing global and local properties of the set of protein interactions, the interactome, is necessary for describing cellular systems. We consider a relatively simple per-protein feature of the interactome: the number of interaction partners for a protein, which in(More)
RNA-binding proteins (RBPs) exert a broad range of biological functions. To explore the scope of RBPs across eukaryotic evolution, we determined the in vivo RBP repertoire of the yeast Saccharomyces cerevisiae and identified 678 RBPs from yeast and additionally 729 RBPs from human hepatocytic HuH-7 cells. Combined analyses of these and recently published(More)