Wolfgang Huber

Learn More
High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. We propose a method based on the(More)
The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. The goals of the project include: fostering collaborative development and widespread use of innovative software, reducing barriers to entry into interdisciplinary scientific research, and promoting the achievement of(More)
In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a(More)
MOTIVATION A large choice of tools exists for many standard tasks in the analysis of high-throughput sequencing (HTS) data. However, once a project deviates from standard workflows, custom scripts are needed. RESULTS We present HTSeq, a Python library to facilitate the rapid development of such scripts. HTSeq offers parsers for many common data formats in(More)
Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust(More)
RNA-seq is a powerful tool for the study of alternative splicing and other forms of alternative isoform expression. Understanding the regulation of these processes requires sensitive and specific detection of differential isoform abundance in comparisons between conditions, cell types, or tissues. We present DEXSeq, a statistical method to test for(More)
Genome-wide pervasive transcription has been reported in many eukaryotic organisms, revealing a highly interleaved transcriptome organization that involves hundreds of previously unknown non-coding RNAs. These recently identified transcripts either exist stably in cells (stable unannotated transcripts, SUTs) or are rapidly degraded by the RNA surveillance(More)
We introduce a statistical model for microarray gene expression data that comprises data calibration, the quantification of differential expression, and the quantification of measurement error. In particular, we derive a transformation h for intensity measurements, and a difference statistic Deltah whose variance is approximately constant along the whole(More)
Meiotic recombination has a central role in the evolution of sexually reproducing organisms. The two recombination outcomes, crossover and non-crossover, increase genetic diversity, but have the potential to homogenize alleles by gene conversion. Whereas crossover rates vary considerably across the genome, non-crossovers and gene conversions have only been(More)
Bioconductor is an open-source, open-development software project for the analysis and comprehension of high-throughput data in genomics and molecular biology. The project aims to enable interdisciplinary research, collaboration and rapid development of scientific software. Based on the statistical programming language R, Bioconductor comprises 934(More)