Wolfgang Greiter

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
Echolocating bats use echoes of their sonar emissions to determine the position and distance of objects or prey. Target distance is represented as a map of echo delay in the auditory cortex (AC) of bats. During a bat's flight through a natural complex environment, echo streams are reflected from multiple objects along its flight path. Separating such(More)
Flying animals need to react fast to rapid changes in their environment. Visually guided animals use optic flow, generated by their movement through structured environments. Nocturnal bats cannot make use of optic flow, but rely mostly on echolocation. Here, we show that bats exploit echo-acoustic flow to negotiate flight through narrow passages.(More)
The auditory cortex is an essential center for sound localization. In echolocating bats, combination sensitive neurons tuned to specific delays between call emission and echo perception represent target distance. In many bats, these neurons are organized as a chronotopically organized map of echo delay. However, it is still unclear to what extend these(More)
The midbrain superior colliculus (SC) commonly features a retinotopic representation of visual space in its superficial layers, which is congruent with maps formed by multisensory neurons and motor neurons in its deep layers. Information flow between layers is suggested to enable the SC to mediate goal-directed orienting movements. While most mammals(More)
  • 1