Learn More
 A miniscale screening system was developed to detect depolymerizing activities of fungi toward low-rank coals. This system was suitable for the determination of changes in molecular masses as well as for the measurement of the enzymes responsible. A total of 486 fungal strains of different ecophysiological and taxonomic groups were tested for their ability(More)
The direct involvement of manganese peroxidase (MnP) in the mineralization of natural and xenobiotic compounds was evaluated. A broad spectrum of aromatic substances were partially mineralized by the MnP system of the white rot fungus Nematoloma frowardii. The cell-free MnP system partially converted several aromatic compounds, including(More)
The degradation of polycyclic aromatic hydrocarbons by a manganese peroxidase crude preparation of Nematoloma forwardii was demonstrated for a mixture of eight different polycyclic aromatic hydrocarbons, and the five individual polycyclic aromatic hydrocarbons phenanthrene, anthracene, pyrene, fluoranthene, and benzo[alpha]pyrene. Oxidation of polycyclic(More)
A manganese peroxidase preparation from the white-rot fungus Nematoloma frowardii was found to be capable of releasing up to 17% 14CO2 from 14C-labelled synthetic humic substances. The latter were prepared from [U-14C]catechol by spontaneous oxidative polymerization or laccase-catalysed polymerization. The ex-tent of humic substance mineralization was(More)
Microbial cometabolism, i.e. "transformation of a non-growth substrate in the obligate presence of a growth substrate or another transformable compound" (Dalton and Stirling 1982) is a whole-cell phenomenon physiologically based on coupling of different catabolic pathways at the cellular level. It is frequently observed in transformation of xenobiotic(More)
The in vitro depolymerization of humic acids derived from German lignite (low-rank coal, brown coal) was studied using a manganese peroxidase preparation from the white-rot fungus Nematoloma frowardii b19. The H2O2 required was continuously generated by glucose oxidase. Mn peroxidase depolymerized high-molecular-mass humic acids by forming fulvic-acid-like(More)
Within a screening program, 91 fungal strains belonging to 32 genera of different ecological and taxonomic groups (wood- and litter-decaying basidiomycetes, saprophytic micromycetes) were tested for their ability to metabolize and mineralize 2,4,6-trinitrotoluene (TNT). All these strains metabolized TNT rapidly by forming monoaminodinitrotoluenes (AmDNT).(More)
The degradation of phenanthrene and pyrene was investigated by using five different wood-decaying fungi. After 63 days of incubation in liquid culture, 13.8 and 4.3% of the [ring U-14C]phenantherene and 2.4 and 1.4% of the [4,5,9,10-14C]pyrene were mineralized by Trametes versicolor and Kuehneromyces mutabilis, respectively. No 14CO2 evolution was detected(More)
Manganese peroxidase (MnP) from the ligninolytic basidiomycetes Phlebia radiata and Nematoloma frowardii was found to decompose malonate oxidatively in the absence of H2O2 in a reaction system consisting of the enzyme, sodium malonate and MnCl2. The enzymatic oxidation resulted in a substantial decrease in malonate concentration and the formation of CO2,(More)
Resting phenol-grown mycelia of the fungus Penicillium frequentans strain Bi 7/2 were shown to be capable of metabolizing various monohalogenated phenols as well as 3,4-dichlorophenol. 2,4.dichlorophenol could be metabolized in the presence of phenol as cosubstrate. In the first degradation step the halogenated phenols were oxidized to the corresponding(More)