Learn More
The archetypal human tumor suppressor p53 is considered to have unique transactivation properties. The assumption is based on the fact that additionally identified human p53 isoforms lack transcriptional activity. However, we provide evidence for the existence of an alternatively spliced p53 isoform (Deltap53) that exerts its transcriptional activity(More)
Analyses of the different structural systems of the nucleus and the proteins associated with them pose many problems. Because these systems are largely overlapping, in situ localization studies that preserve the in vivo location of proteins and cellular structures often are not satisfactory. In contrast, biochemical cell fractionation may provide(More)
Induction of apoptosis is one of the central activities by which p53 exerts its tumor-suppressing function. Aside from its primary function as a transcription factor, it can promote apoptosis independent of transcription. Recent studies have started to define the mechanisms of non-transcriptional pro-apoptotic p53 activities operating within the intrinsic(More)
Highly purified p53 protein from different sources was able to degrade DNA with a 3'-to-5' polarity, yielding deoxynucleoside monophosphates as reaction products. This exonuclease activity was dependent on Mg2+ and inhibited by addition of 5 mM nucleoside monophosphates. This exonuclease activity is intrinsic to the wild-type p53 protein: it copurified with(More)
The primary CTL response of BALB/c mice infected with the lymphocytic choriomeningitis (LCM) virus strain WE is directed exclusively against one major epitope, n118, whereas a viral variant, ESC, that does not express n118 induces CTL against minor epitopes. We identified one minor epitope, g283, that induces primary lytic activity in ESC-infected mice.(More)
The most import biological function of the tumor suppressor p53 is that of a sequence-specific transactivator. In response to a variety of cellular stress stimuli, p53 induces the transcription of an ever-increasing number of target genes, leading to growth arrest and repair, or to apoptosis. Long considered as a "latent" DNA binder that requires prior(More)
Despite the loss of sequence-specific DNA binding, mutant p53 (mutp53) proteins can induce or repress transcription of mutp53-specific target genes. To date, the molecular basis for transcriptional modulation by mutp53 is not understood, but increasing evidence points to the possibility that specific interactions of mutp53 with DNA play an important role.(More)
Nestin is the characteristic intermediate filament (IF) protein of rapidly proliferating progenitor cells and regenerating tissue. Nestin copolymerizes with class III IF-proteins, mostly vimentin, into heteromeric filaments. Its expression is downregulated with differentiation. Here we show that a strong nestin expression in mouse embryo tissue coincides(More)
Glioblastoma is the most common malignant brain tumor in adults. The currently available treatments offer only a palliative survival advantage and the need for effective treatments remains an urgent priority. Activation of the p53 growth suppression/apoptotic pathway is one of the promising strategies in targeting glioma cells. We show that the quinoline(More)
Simian virus 40 (SV40) is a powerful tool to study cellular transformation in vitro, as well as tumor development and progression in vivo. Various cellular kinases, among them members of the CK1 family, play an important role in modulating the transforming activity of SV40, including the transforming activity of T-Ag, the major transforming protein of SV40,(More)