Wolfgang Deppert

Learn More
Induction of apoptosis is one of the central activities by which p53 exerts its tumor-suppressing function. Aside from its primary function as a transcription factor, it can promote apoptosis independent of transcription. Recent studies have started to define the mechanisms of non-transcriptional pro-apoptotic p53 activities operating within the intrinsic(More)
The ductal carcinoma in situ (DCIS) of the mammary gland represents an early, pre-invasive stage in the development of invasive breast carcinoma and is increasingly diagnosed since the introduction of high-quality mammography screening. Uncertainties in the prognosis for patients with DCIS have caused a controversial discussion about adequate treatment, and(More)
The p53-targeted kinases casein kinase 1delta (CK1delta) and casein kinase 1epsilon (CK1epsilon) have been proposed to be involved in regulating DNA repair and chromosomal segregation. Recently, we showed that CK1delta localizes to the spindle apparatus and the centrosomes in cells with mitotic failure caused by DNA-damage prior to mitotic entry. We provide(More)
When growth-arrested mouse fibroblasts re-entered the cell-cycle, the rise in tumour suppressor p53 mRNA level markedly preceded the rise in expression of the p53 protein. Furthermore, gamma-irradiation of such cells led to a rapid increase in p53 protein biosynthesis even in the presence of the transcription inhibitor actinomycin D. Both findings strongly(More)
Members of the casein kinase 1 family of serine/threonine kinases are highly conserved from yeast to mammals and seem to play an important role in vesicular trafficking, DNA repair, cell cycle progression and cytokinesis. We here report that in interphase cells of various mammalian species casein kinase 1 delta (CK1delta) specifically interacts with the(More)
Following genotoxic stress, p53 either rescues a damaged cell or promotes its elimination. The parameters determining a specific outcome of the p53 response are largely unknown. In mouse fibroblasts treated with different irradiation schemes, we monitored transcriptional and non-transcriptional p53 activities and identified determinants that initiate an(More)
The serine/threonine-specific casein kinase I delta (CKIdelta) is ubiquitously expressed in all tissues, is p53 dependently induced in stress situations and plays an important role in various cellular processes. Our immunohistochemical analysis of the human placenta revealed strongest expression of CKIdelta in extravillous trophoblast cells and in(More)
The archetypal human tumor suppressor p53 is considered to have unique transactivation properties. The assumption is based on the fact that additionally identified human p53 isoforms lack transcriptional activity. However, we provide evidence for the existence of an alternatively spliced p53 isoform (Deltap53) that exerts its transcriptional activity(More)
The different pocket proteins are established as negative cell cycle regulators. With regard to the repressor functions of pocket proteins in cellular senescence, studies so far have mainly focused on pRb/p105. Here, we show that in a broad range of wild-type p53-expressing human tumor cells, and in human diploid fibroblasts, Rb2/p130 is the dominating(More)
Transcriptional activation of p53-regulated genes is initiated by sequence-specific DNA binding of p53 to target binding sites. Regulation of sequence-specific DNA binding is complex and occurs at various levels. We demonstrate that DNA topology is an important parameter for regulating the selective and highly specific interaction of p53 with its target(More)