Learn More
Both the clinically established diameter criterion and novel approaches of computational finite element (FE) analyses for rupture risk stratification of abdominal aortic aneurysms (AAA) are based on assumptions of population-averaged, uniform material properties for the AAA wall. The presence of inter-patient and intra-patient variations in material(More)
One key problem in modern medical imaging is linking measured data and actual physiological quantities. In this article we derive such a link between the electrical bioimpedance of lung parenchyma, which can be measured by electrical impedance tomography (EIT), and the magnitude of regional ventilation, a key to understanding lung mechanics and developing(More)
Neumann boundary conditions prescribing the total momentum flux at inflow boundaries of biomechanical problems are proposed in this study. This approach enables the simultaneous application of velocity/flow rate and pressure curves at inflow boundaries. As the basic numerical method, a residual-based variational multiscale (or stabilized) finite element(More)
In many biomedical flow problems, reversed flows along with standard treatment of Neumann boundary conditions can cause instabilities. We have developed a method that resolves these instabilities in a consistent way while maintaining correct pressure and flow rate values. We also are able to remove the necessary prescription of both pressure and(More)
We present a theoretical and computational analysis of the rheology of networks made up of bundles of semiflexible filaments bound by transient cross-linkers. Such systems are ubiquitous in the cytoskeleton and can be formed in vitro using filamentous actin and various cross-linkers. We find that their high-frequency rheology is characterized by a scaling(More)
As a degenerative and inflammatory desease of elderly patients, about 80% of abdominal aortic aneurysms (AAA) show considerable wall calcification. Effect of calcifications on computational wall stress analyses of AAAs has been rarely treated in literature so far. Calcifications are heterogeneously distributed, non-fibrous, stiff plaques which are most(More)
It has been shown by our group and by others1,2 that increased glucose metabolism in the aortic wall of patients with aneurysms of the abdominal aorta (AAA) can be visualized in vivo by F-fluorodeoxyglucose positron emission tomography (FDG-PET). Interestingly, an increased glucose metabolism in AAA wall was strongly associated with rapid progression or(More)
In abdominal aortic aneurysm (AAA) simulation the patient-specific geometry of the object of interest is very often reconstructed from in vivo medical imaging such as CT scans. Such geometries represent a deformed configuration stressed by typical in vivo conditions. However, commonly, such structures are considered stress-free in simulation. In this(More)