Wolfgang A. Wall

Learn More
Mortar finite element methods allow for a flexible and efficient coupling of arbitrary nonconforming interface meshes and are by now quite well established in nonlinear contact analysis. In this paper, a mortar method for three-dimensional (3D) finite deformation contact is presented. Our formulation is based on so-called dual Lagrange multipliers, which in(More)
The objective of this work is the development of a novel finite element formulation describing the contact behavior of slender beams in complex 3D contact configurations involving arbitrary beam-to-beam orientations. It is shown by means of a mathematically concise investigation of well-known beam contact models based on point-wise contact forces that these(More)
The present work focuses on geometrically exact finite elements for highly slender beams. It aims at the proposal of novel formulations of Kirchhoff-Love type, a detailed review of existing formulations of Kirchhoff-Love and Simo-Reissner type as well as a careful evaluation and comparison of the proposed and existing formulations. Two different rotation(More)
Existing beam contact formulations can be categorized in point-to-point contact models that consider a discrete contact force at the closest point of the beams, and line-to-line contact models that assume distributed contact forces. In this work, it will be shown that line contact formulations applied to slender beams provide accurate and robust mechanical(More)