Wolfgang A. Teder-Sälejärvi

Learn More
Spatial constraints on multisensory integration of auditory (A) and visual (V) stimuli were investigated in humans using behavioral and electrophysiological measures. The aim was to find out whether cross-modal interactions between A and V stimuli depend on their spatial congruity, as has been found for multisensory neurons in animal studies (Stein &(More)
Selective attention may be focused upon a region of interest within the visual surroundings, thereby improving the perceptual quality of stimuli at that location. It has been debated whether this spatially selective mechanism plays a role in the attentive selection of whole objects in a visual scene. The relationship between spatial and object-selective(More)
Orienting attention involuntarily to the location of a sudden sound improves perception of subsequent visual stimuli that appear nearby. The neural substrates of this cross-modal attention effect were investigated by recording event-related potentials to the visual stimuli using a dense electrode array and localizing their brain sources through inverse(More)
Attended objects are perceived to occur before unattended objects even when the two objects are presented simultaneously. This finding has led to the widespread view that attention modulates the speed of neural transmission in the various perceptual pathways. We recorded event-related potentials during a time-order judgment task to determine whether a(More)
The neural systems that mediate voluntary shifts of attention to visual and auditory stimuli were investigated by examining the patterns of human brain electricity elicited by attention-directing cues in auditory and visual tasks. Several lateralized event-related potential (ERP) components were observed when participants shifted attention in expectation of(More)
The brain organizes sound into coherent sequences, termed auditory streams. We asked whether task-irrelevant sounds would be detected as separate auditory streams in a natural listening environment that included three simultaneously active sound sources. Participants watched a movie with sound while street-noise and sequences of naturally varying footstep(More)
Blind individuals who lost their sight as older children or adults were compared with normally sighted controls in their ability to focus auditory spatial attention and to localize sounds in a noisy acoustic environment. Event-related potentials (ERPs) were recorded while participants attended to sounds presented in free field from either central or(More)
The objective of this study was to compare autistic adults and matched control subjects in their ability to focus attention selectively on a sound source in a noisy environment. Event-related brain potentials (ERPs) were recorded while subjects attended to a fast paced sequence of brief noise bursts presented in free-field at a central or peripheral(More)
Neurologically normal observers misperceive the midpoint of horizontal lines as systematically leftward of veridical center, a phenomenon known as pseudoneglect. Pseudoneglect is attributed to a tonic asymmetry of visuospatial attention favoring left hemispace. Whereas visuospatial attention is biased toward left hemispace, some evidence suggests that(More)
Integration of information across time is an essential part of auditory processing. Evidence from a variety of experiments support the notion of an approximately 200-ms long time window following the onset of a sound, during which a unitary sound representation is formed (the temporal window of integration, TWI). The temporal resolution in the auditory(More)