Wolfgang A. Teder-Sälejärvi

Learn More
Despite reports of improved auditory discrimination capabilities in blind humans and visually deprived animals, there is no general agreement as to the nature or pervasiveness of such compensatory sensory enhancements. Neuroimaging studies have pointed out differences in cerebral organization between blind and sighted humans, but the relationship between(More)
Crossmodal integration was studied in humans by presenting random sequences of auditory (brief noise bursts), visual (flashes), and audiovisual (simultaneous noise bursts and flashes) stimuli from a central location at irregular intervals between 600 and 800 ms. The subjects' task was to press a button to infrequent and unpredictable (P=0.15) target stimuli(More)
Adaptive behavior requires the rapid switching of attention among potentially relevant stimuli that appear in the environment. The present study used an electrophysiological approach to continuously measure the time course of visual pathway facilitation in human subjects as attention was shifted from one location to another. Steady-state visual evoked(More)
Recordings of electrical and magnetic brain responses to sensory stimulation provide high-resolution measures of the time course of early perceptual processing. Spatio-temporal analyses of brain activity patterns during the first 200 ms after stimulus presentation have characterized the timing of attentional selection processes and different stages of(More)
Steady-state visual evoked potentials (SSVEPs) were recorded from the scalp of subjects who attended to a flickering LED display in one visual field while ignoring a similar display (flickering at a different frequency) in the opposite visual field. The flicker frequencies were 20.8 Hz in the left-field display and 27.8 Hz in the right-field display. The(More)
To perceive real-world objects and events, we need to integrate several stimulus features belonging to different sensory modalities. Although the neural mechanisms and behavioural consequences of intersensory integration have been extensively studied, the processes that enable us to pay attention to multimodal objects are still poorly understood. An(More)
Selective attention may be focused upon a region of interest within the visual surroundings, thereby improving the perceptual quality of stimuli at that location. It has been debated whether this spatially selective mechanism plays a role in the attentive selection of whole objects in a visual scene. The relationship between spatial and object-selective(More)
Spatial constraints on multisensory integration of auditory (A) and visual (V) stimuli were investigated in humans using behavioral and electrophysiological measures. The aim was to find out whether cross-modal interactions between A and V stimuli depend on their spatial congruity, as has been found for multisensory neurons in animal studies (Stein &(More)
Orienting attention involuntarily to the location of a sudden sound improves perception of subsequent visual stimuli that appear nearby. The neural substrates of this cross-modal attention effect were investigated by recording event-related potentials to the visual stimuli using a dense electrode array and localizing their brain sources through inverse(More)
Attended objects are perceived to occur before unattended objects even when the two objects are presented simultaneously. This finding has led to the widespread view that attention modulates the speed of neural transmission in the various perceptual pathways. We recorded event-related potentials during a time-order judgment task to determine whether a(More)