Wolfdieter Springer

Learn More
Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are the most common cause of autosomal-dominant familial and late-onset sporadic Parkinson's disease (PD). LRRK2 is a large multi-domain protein featuring a GTP-binding C-terminal of Ras of complex proteins (ROC) (ROCO) domain combination unique for the ROCO protein family, directly(More)
The organization of the motor protein myosin into motile cellular structures requires precise temporal and spatial control. Caenorhabditis elegans UNC-45 facilitates this by functioning both as a chaperone and as a Hsp90 cochaperone for myosin during thick filament assembly. Consequently, mutations in C. elegans unc-45 result in paralyzed animals with(More)
Leucine rich repeat transmembrane protein 3 (LRRTM3) is member of a synaptic protein family. LRRTM3 is a nested gene within α-T catenin (CTNNA3) and resides at the linkage peak for late-onset Alzheimer's disease (LOAD) risk and plasma amyloid β (Aβ) levels. In-vitro knock-down of LRRTM3 was previously shown to decrease secreted Aβ, although the mechanism of(More)
Degradation of malfunctional mitochondria by mitophagy is a pivotal component of mitochondrial quality control to maintain cellular homeostasis. Mitochondrial clearance through the PINK1/PARK2 pathway is mediated by autophagic adaptor proteins. Previous studies revealed a significant involvement, but not an absolute requirement for SQSTM1 in PARK2-dependent(More)
Parkinson's disease (PD) motor symptoms are caused by degeneration of nigrostriatal dopaminergic (DAergic) neurons. The most common causes of hereditary PD are mutations in the PARKIN gene. The ubiquitin ligase parkin has been shown to mediate neuroprotection in cell culture and in vivo, but the molecular mechanisms are not well understood. We investigated(More)
OBJECTIVE To assess the role of CHCHD2 variants in patients with Parkinson disease (PD) and Lewy body disease (LBD) in Caucasian populations. METHODS All exons of the CHCHD2 gene were sequenced in a US Caucasian patient-control series (878 PD, 610 LBD, and 717 controls). Subsequently, exons 1 and 2 were sequenced in an Irish series (355 PD and 365(More)
Expression of the Parkinson's disease-associated protein alpha-synuclein causes formation of aggregates and cytotoxicity in a great diversity of transgenic model organisms, in the case of Drosophila melanogaster affecting specific dopaminergic neuron clusters. The relative contribution of alpha-synuclein misfolding and phosphorylation for neurodegeneration(More)
Loss-of-function mutations in PINK1 or PARKIN are the most common causes of autosomal recessive Parkinson's disease. Both gene products, the Ser/Thr kinase PINK1 and the E3 Ubiquitin ligase Parkin, functionally cooperate in a mitochondrial quality control pathway. Upon stress, PINK1 activates Parkin and enables its translocation to and ubiquitination of(More)
Mutations in the LRRK2 gene represent the most common genetic cause of late onset Parkinson's disease. The physiological and pathological roles of LRRK2 are yet to be fully determined but evidence points towards LRRK2 mutations causing a gain in kinase function, impacting on neuronal maintenance, vesicular dynamics and neurotransmitter release. To explore(More)
We recently showed that mutation of the VPS35 gene can cause late-onset Parkinson's disease. In the present study we sequenced 702 affected subjects from the Mayo Clinic Parkinson's disease patient-control series for the VPS29 and VPS26A/B genes. We identified only 2 rare nonsynonymous variants in the VPS26A p.K93E and VPS29 p.N72H. The results show that(More)