Learn More
Two mutants of Saccharomyces cerevisiae affected in peroxisomal assembly (pas mutants) have been isolated and characterized. Each strain contains a single mutation that results in (i) the inability to grow on oleic acid, (ii) accumulation of peroxisomal matrix enzymes in the cytosol, and (iii) absence of detectable peroxisomes at the ultrastructural level.(More)
  • M Marzioch, R Erdmann, M Veenhuis, W H Kunau
  • 1994
To identify components of the peroxisomal import pathway in yeast, we have isolated pas mutants affected in peroxisome biogenesis. Two mutants assigned to complementation group 7 define a new gene, PAS7, whose product is necessary for import of thiolase, a PTS2-containing protein, but not for that of SKL (PTS1)-containing proteins, into peroxisomes. We have(More)
Peroxisomes transport folded and oligomeric proteins across their membrane. Two cytosolic import receptors, Pex5p and Pex7p, along with approximately 12 membrane-bound peroxins participate in this process. While interactions among individual peroxins have been described, their organization into functional units has remained elusive. We have purified and(More)
The import of peroxisomal matrix proteins is dependent on one of two targeting signals, PTS1 and PTS2. We demonstrate in vivo that not only the import of thiolase but also that of a chimeric protein consisting of the thiolase PTS2 (amino acids 1-18) fused to the bacterial protein beta-lactamase is Pas7p dependent. In addition, using a combination of several(More)
PAS genes are required for peroxisome biogenesis in the yeast S. cerevisiae. Here we describe the cloning, sequencing, and characterization of the PAS1 gene. Its gene product, Pas1p, has been identified as a rather hydrophilic 117 kd polypeptide. The predicted Pas1p sequence contains two putative ATP-binding sites and reveals a structural relationship to(More)
Import of matrix proteins into peroxisomes requires two targeting signal-specific import receptors, Pex5p and Pex7p, and their binding partners at the peroxisomal membrane, Pex13p and Pex14p. Several constructs of human PEX5 have been overexpressed and purified by affinity chromatography in order to determine functionally important interactions and provide(More)
We report the identification and molecular characterization of Pex19p, an oleic acid-inducible, farnesylated protein of 39.7 kDa that is essential for peroxisome biogenesis in Saccharomyces cerevisiae. Cells lacking Pex19p are characterized by the absence of morphologically detectable peroxisomes and mislocalization of peroxisomal matrix proteins to the(More)
Saccharomyces cerevisiae pas3-mutants are described which conform the pas-phenotype recently reported for the peroxisomal assembly mutants pas1-1 and pas2 (Erdmann, R., M. Veenhuis, D. Mertens, and W.-H Kunau, 1989, Proc. Natl. Acad. Sci. USA. 86:5419-5423). The isolation of pas3-mutants enabled us to clone the PAS3 gene by functional complementation. DNA(More)
Import of peroxisomal matrix proteins is essential for peroxisome biogenesis. Genetic and biochemical studies using a variety of different model systems have led to the discovery of 23 PEX genes required for this process. Although it is generally believed that, in contrast to mitochondria and chloroplasts, translocation of proteins into peroxisomes involves(More)