Wolf Bernd Frommer

Learn More
A specialized database (DB) for Arabidopsis membrane proteins, ARAMEMNON, was designed that facilitates the interpretation of gene and protein sequence data by integrating features that are presently only available from individual sources. Using several publicly available prediction programs, putative integral membrane proteins were identified among the(More)
Ammonium and nitrate are the prevalent nitrogen sources for growth and development of higher plants. 15N-uptake studies demonstrated that ammonium is preferred up to 20-fold over nitrate by Arabidopsis plants. To study the regulation and complex kinetics of ammonium uptake, we isolated two new ammonium transporter (AMT) genes and showed that they(More)
Patatin is one of the major soluble proteins in potato tubers and is encoded by a multigene family. Based on structural considerations two classes of patatin genes are distinguished. The 5'-upstream regulatory region of a class I gene contained within a 1.5 kb sequence is essential and sufficient to direct a high level of tuber-specific gene activity which(More)
The leaf sucrose transporter SUT1 is essential for phloem loading and long-distance transport of assimilates. Both SUT1 messenger RNA (mRNA) and protein were shown to be diurnally regulated and to have high turnover rates. SUT1 protein was detected by immunolocalization in plasma membranes of enucleate sieve elements (SEs) in tobacco, potato, and tomato.(More)
Active loading of the phloem with sucrose in leaves is an essential part of the process of supplying non-photosynthetic tissues with carbon and energy. The transport is protein mediated and coupled to proton-symport, but so far no sucrose carrier gene has been identified. Using an engineered Saccharomyces cerevisiae strain, a cDNA from spinach encoding a(More)
A new subfamily of sucrose transporters from Arabidopsis (AtSUT4), tomato (LeSUT4), and potato (StSUT4) was isolated, demonstrating only 47% similarity to the previously characterized SUT1. SUT4 from two plant species conferred sucrose uptake activity when expressed in yeast. The K(m) for sucrose uptake by AtSUT4 of 11.6 +/- 0.6 mM was approximately 10-fold(More)
In leaves, sucrose uptake kinetics involve high- and low-affinity components. A family of low- and high-affinity sucrose transporters (SUT) was identified. SUT1 serves as a high-affinity transporter essential for phloem loading and long-distance transport in solanaceous species. SUT4 is a low-affinity transporter with an expression pattern overlapping that(More)
Vascular plants appeared ~410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in(More)
Amino acid transport in plants is mediated by at least two large families of plasma membrane transporters. Arabidopsis thaliana, a nonmycorrhizal species, is able to grow on media containing amino acids as the sole nitrogen source. Arabidopsis amino acid permease (AAP) subfamily genes are preferentially expressed in the vascular tissue, suggesting roles in(More)
Sucrose synthase, an important enzyme in carbohydrate metabolism, catalyzes the reversible conversion of sucrose and UDP to UDP-glucose and fructose in vitro. To investigate the in vivo function of sucrose synthase, both the gene (Asus1) and a corresponding cDNA from roots of Arabidopsis were isolated. The Asus1 gene has homologies of 67-72% to sucrose(More)