Learn More
MOTIVATION Intrinsically disordered proteins play a crucial role in numerous regulatory processes. Their abundance and ubiquity combined with a relatively low quantity of their annotations motivate research toward the development of computational models that predict disordered regions from protein sequences. Although the prediction quality of these methods(More)
—In this paper, we introduce a novel approach to time-series prediction realized both at the linguistic and numerical level. It exploits fuzzy cognitive maps (FCMs) along with a recently proposed learning method that takes advantage of real-coded genetic algorithms. FCMs are used for modeling and qualitative analysis of dynamic systems. Within the framework(More)
Fuzzy cognitive maps (FCMs) are convenient and widely used architectures for modeling dynamic systems, which are characterized by a great deal of flexibility and adaptability. Several recent works in this area concern strategies for the development of FCMs. Although a few fully automated algorithms to learn these models from data have been introduced, the(More)
The classification problem is one of the most common tasks in Data Mining and Machine Learning. Given its vast applicability in many real domains, supervised classification has been addressed and extensively studied. There are numerous different classification methods; among the many we can cite associative classifiers. This newly suggested model uses(More)
Sequence-based prediction of protein secondary structure (SS) enjoys wide-spread and increasing use for the analysis and prediction of numerous structural and functional characteristics of proteins. The lack of a recent comprehensive and large-scale comparison of the numerous prediction methods results in an often arbitrary selection of a SS predictor. To(More)
  • 1