Learn More
The basolateral nucleus of the amygdala (BLA) and medial prefrontal cortex (mPFC) are involved importantly in the processing and encoding of emotionally salient learned associations. Here, we examined the possible role of the mPFC in the acquisition and encoding of emotional associative learning at the behavioral and single-neuron level. A subpopulation of(More)
BACKGROUND Despite there being a relatively large number of methods papers which detail specifically the development of stimulation devices, only a small number of reports involve the application of these devices in freely moving animals. To date multiple preclinical neural stimulators have been designed and described but have failed to make an impact on(More)
Epilepsy is a debilitating condition affecting 1% of the population worldwide. Medications fail to control seizures in at least 30% of patients, and deep brain stimulation (DBS) is a promising alternative treatment. A modified clinical DBS hardware platform was recently described (PC+S) allowing long-term recording of electrical brain activity such that(More)
The ventral subiculum (vSub) has been implicated in a wide range of neurocognitive functions, including responses to fear, stress, and anxiety. The vSub receives dense noradrenergic (NE) inputs from the locus coeruleus (LC), and the LC-NE system is heavily implicated in attention and is known to be activated by stressors. However, the way in which the(More)
The ventral subiculum (vSub) of the hippocampus is critically involved in mediating the forebrain's response to stress, particularly with regard to psychogenic stressors. Stress, in turn, is known to aggravate many psychiatric conditions including schizophrenia, depression, anxiety, and drug abuse. Pathological alterations in hippocampal function have been(More)
High-frequency oscillations (HFOs) have been proposed as a novel marker for epileptogenic tissue, spurring tremendous research interest into the characterization of these transient events. A wealth of continuously recorded intracranial electroencephalographic (iEEG) data is currently available from patients undergoing invasive monitoring for the surgical(More)
Electrophysiological recordings from subdural electrocorticography (ECoG) electrodes implanted temporarily during deep brain stimulation (DBS) surgeries offer a unique opportunity to record cortical activity for research purposes. The optimal utilization of this important research method relies on accurate and robust localization of ECoG electrodes, and(More)
Movement related synchronization of high frequency activity (HFA, 76-100 Hz) is a somatotopic process with spectral power changes occurring during movement in the sensorimotor cortex (Miller et al., 2007) [1]. These features allowed movement-related changes in HFA to be used to functionally validate the estimations of subdural electrode locations, which may(More)
Recent electrocorticography data have demonstrated excessive coupling of beta-phase to gamma-amplitude in primary motor cortex and that deep brain stimulation facilitates motor improvement by decreasing baseline phase-amplitude coupling. However, both the dynamic modulation of phase-amplitude coupling during movement and the general cortical neurophysiology(More)