Witold J. Lipski

Learn More
Electrophysiological recordings from subdural electrocorticography (ECoG) electrodes implanted temporarily during deep brain stimulation (DBS) surgeries offer a unique opportunity to record cortical activity for research purposes. The optimal utilization of this important research method relies on accurate and robust localization of ECoG electrodes, and(More)
The ventral subiculum (vSub) has been implicated in a wide range of neurocognitive functions, including responses to fear, stress, and anxiety. The vSub receives dense noradrenergic (NE) inputs from the locus coeruleus (LC), and the LC-NE system is heavily implicated in attention and is known to be activated by stressors. However, the way in which the(More)
The ventral subiculum (vSub) of the hippocampus is critically involved in mediating the forebrain's response to stress, particularly with regard to psychogenic stressors. Stress, in turn, is known to aggravate many psychiatric conditions including schizophrenia, depression, anxiety, and drug abuse. Pathological alterations in hippocampal function have been(More)
Recent electrocorticography data have demonstrated excessive coupling of beta-phase to gamma-amplitude in primary motor cortex and that deep brain stimulation facilitates motor improvement by decreasing baseline phase-amplitude coupling. However, both the dynamic modulation of phase-amplitude coupling during movement and the general cortical neurophysiology(More)
INTRODUCTION Beta oscillations play an important role in gating movement. Because pathological oscillatory changes in the beta band represent a hallmark of Parkinson disease (PD), tracking oscillatory changes in this band has been proposed as a marker for closed-loop stimulation. However, the dynamics of casual influences across the motor circuit during(More)
Movement related synchronization of high frequency activity (HFA, 76-100 Hz) is a somatotopic process with spectral power changes occurring during movement in the sensorimotor cortex (Miller et al., 2007) [1]. These features allowed movement-related changes in HFA to be used to functionally validate the estimations of subdural electrode locations, which may(More)
The ability to differentially alter specific brain functions via deep brain stimulation (DBS) represents a monumental advance in clinical neuroscience, as well as within medicine as a whole. Despite the efficacy of DBS in the treatment of movement disorders, for which it is often the gold-standard therapy when medical management becomes inadequate, the(More)
High-frequency oscillations (HFOs) have been proposed as a novel marker for epileptogenic tissue, spurring tremendous research interest into the characterization of these transient events. A wealth of continuously recorded intracranial electroencephalographic (iEEG) data is currently available from patients undergoing invasive monitoring for the surgical(More)
  • 1