Wing Chiu Tong

Learn More
Cardiac and uterine muscle cells and tissue can be either autorhythmic or excitable. These behaviours exchange stability at bifurcations produced by changes in parameters, which if spatially localized can produce an ectopic pacemaking focus. The effects of these parameters on cell dynamics have been identified and quantified using continuation algorithms(More)
We apply virtual tissue engineering to the full term human uterus with a view to reconstruction of the spatiotemporal patterns of electrical activity of the myometrium that control mechanical activity via intracellular calcium. The three-dimensional geometry of the gravid uterus has been reconstructed from segmented in vivo magnetic resonance imaging as(More)
Cardiac ventricular cells and tissues are normally excitable, and are activated by propagating waves of excitation that are initiated in the specialized pacemaking region of the heart. However, isolated or repetitive activity can be initiated at abnormal (ectopic) sites in the ventricles. To trigger an endogenous ectopic beat, there must be a compact focus(More)
Methods for the experimental and clinical investigation of cardiac arrhythmias are limited to inferring propagation within the myocardium, from surface measurements, or from electrodes at a few sites within the cardiac wall. Biophysically and anatomically detailed computational models of cardiac tissues offer a powerful way for studying the electrical(More)
The sarcoplasmic reticulum (SR) of smooth muscle is crucial for appropriate regulation of Ca(2+) signalling. In visceral and vascular smooth muscles the SR is known to periodically lie in close register, within a few nanometres, to the plasma membrane. Recent work has focussed on reconstructions of the ultrastructural arrangement of this so-called(More)
Genetically engineered pacemaking in ventricular cells has been achieved by down-regulation of the time independent inward rectifying current (I(K1)), or insertion of the hyperpolarisation-activated funny current (I(f)). We analyse the membrane system (i.e. ionic concentrations clamped) of an epicardial Luo-Rudy dynamic cell model using continuation(More)
Muscle tissue poses a particular challenge to proteomic analysis due to a very wide range of protein abundances arising from the dominant expression of myofilament-related proteins. We address this issue by describing proteomic analysis with liquid chromatography-mass spectrometry (LC-MS) and sequential window acquisition of all theoretical mass spectra(More)
  • 1