Learn More
Forisomes are Ca(2+)-driven, ATP-independent contractile protein bodies that reversibly occlude sieve elements in faboid legumes. They apparently consist of at least three proteins; potential candidates have been described previously as 'FOR' proteins. We isolated three genes from Medicago truncatula that correspond to the putative forisome proteins and(More)
Emerging technologies are creating increasing interest in smart materials that may serve as actuators in micro- and nanodevices. Mechanically active polymers currently studied include a variety of materials. ATP-driven motor proteins, the actuators of living cells, possess promising characteristics, but their dependence on strictly defined chemical(More)
Protein bodies called forisomes undergo Ca(2+)-dependent deformations to occlude sieve tubes reversibly, providing a unique regulatory mechanism of phloem transport. Because forisomes are known exclusively from the Papilionoideae (Leguminosae), the evolution of forisome function may have played a role in the rapid radiation of this huge taxon. The(More)
The sieve tubes of the phloem are enigmatic structures. Their role as channels for the distribution of assimilates was established in the 19th century, but their sensitivity to disturbations has hampered the elucidation of their transport mechanisms and its regulation ever since. Ernst Münch's classical monograph of 1930 is generally regarded as the first(More)
In recent years the phenomenon of tissue tension and its functional connection to elongation growth has regained much interest. In the present study we reconstruct older models of mechanical inhomogenities in growing plant organs, in order to establish an accurate historical background for the current discussion. We focus on the iatromechanic model(More)
Forisomes are contractile protein bodies that appear to control flux rates in the phloem of faboid legumes by reversibly plugging the sieve tubes. Plugging is triggered by Ca(2+) which induces an anisotropic deformation of forisomes, consisting of a longitudinal contraction and a radial expansion. By conventional light microscopy and confocal laser-scanning(More)
Sieve tubes of legumes (Fabaceae) contain characteristic P-protein crystalloids with controversial function. We studied their behavior by conventional light, electron, and confocal laser scanning microscopy. In situ, crystalloids are able to undergo rapid (<1 sec) and reversible conversions from the condensed resting state into a dispersed state, in which(More)
Biophysical parameters potentially involved in growth regulation were studied at the single-cell level in the third leaf of barley (Hordeum vulgare) after exposure to various degrees of NaCl stress for 3 to 5 d. Gradients of elongation growth were measured, and turgor pressure, osmolality, and water potentials (psi) were determined (pressure probe and(More)
BACKGROUND Roots are the classical model system to study the organization and dynamics of organ growth zones. Profiles of the velocity of root elements relative to the apex have generally been considered to be sigmoidal. However, recent high-resolution measurements have yielded bi-linear profiles, suggesting that sigmoidal profiles may be artifacts caused(More)
BACKGROUND AND AIMS Forisomes are Ca(2+)-dependent contractile protein bodies that form reversible plugs in sieve tubes of faboid legumes. Previous work employed Vicia faba forisomes, a not entirely unproblematic experimental system. The aim of this study was to seek to establish a superior model to study these intriguing actuators. METHODS Existing(More)