Learn More
Epidemiological studies continue to indicate associations between exposure to increased concentrations of ambient fine and ultrafine particles and adverse health effects in susceptible individuals. The ultrafine particle fraction in the ambient atmosphere seems to play a specific role. Yet, the dosimetry (including deposition patterns in the respiratory(More)
The role of alveolar macrophages in the fate of ultrafine particles in the lung was investigated. Male Wistar-Kyoto rats were exposed to ultrafine gold particles, generated by a spark generator, for 6 h at a concentration of 88 microg/m3 (4 x 10(6)/cm3, 16 nm modal mobility diameter). Up to 7 days, the animals were serially sacrificed, and lavaged cells and(More)
Gold nanoparticles (GNP) provide many opportunities in imaging, diagnostics, and therapies of nanomedicine. Hence, their biokinetics in the body are prerequisites for specific tailoring of nanomedicinal applications and for a comprehensive risk assessment. We administered (198)Au-radio-labelled monodisperse, negatively charged GNP of five different sizes(More)
Spherical monodisperse ferromagnetic iron oxide particles of 1.9 microm geometric and 4.2 microm aerodynamic diameter were inhaled by seven patients with primary ciliary dyskinesia (PCD) using the shallow bolus technique, and compared to 13 healthy non-smokers (NS) from a previous study. The bolus penetration front depth was limiting to the phase1 dead(More)
Both epidemiological and toxicological studies indicate that inhalation and subsequent deposition of airborne particles into the lungs have adverse health effects. Recently, the ultrafine particle (UfP) fraction (diameter < 100 nm) has received particular attention, as their small size may lead to more toxic properties. In this study we summarize the(More)
While epidemiological studies indicate an association between adverse health effects and ambient ultrafine particle concentrations in susceptible individuals, toxicological studies aim to identify mechanisms which are causal for the gradual transition from the physiological status towards patho-physiological disease. Impressive progress has been made in(More)
Human pulmonary retention of 35 nm 99mTc-labeled carbonaceous particles, produced with a modified Technegas generator, was followed for 24 h using a gamma camera imaging technique. Nine healthy subjects and four asthmatics inhaled the test particles. Particle labeling stability was tested in vitro during 48 h. We also measured in vivo leaching in blood and(More)
BACKGROUND After shallow bolus inhalation of radiolabeled aerosols, gamma camera imaging has shown a left-right asymmetry, with a higher fraction of deposited particles in the left lung. It was not clear, however, whether this phenomenon was an effect of asymmetry in lung ventilation or aerosol deposition efficiency. METHODS Lung ventilation and aerosol(More)
RATIONALE Little is known about clearance of ultrafine carbon particles from the different regions of the human lung. These particles may accumulate and present a health hazard because of their high surface area. OBJECTIVES Technetium Tc 99m ((99m)Tc)-radiolabeled 100-nm-diameter carbon particles were inhaled by healthy nonsmokers, asymptomatic smokers,(More)
Inhalative nanocarriers for local or systemic therapy are promising. Gold nanoparticles (AuNP) have been widely considered as candidate material. Knowledge about their interaction with the lungs is required, foremost their uptake by surface macrophages and epithelial cells. Diseased lungs are of specific interest, since these are the main recipients of(More)