Learn More
Three-dimensional (3D) structural information on many length scales is of central importance in biological research. Excellent methods exist to obtain structures of molecules at atomic, organelles at electron microscopic, and tissue at light-microscopic resolution. A gap exists, however, when 3D tissue structure needs to be reconstructed over hundreds of(More)
Cerebellar long-term depression (LTD) is a calcium-dependent process in which coincident activity of parallel fiber (PF) and climbing fiber (CF) synapses causes a long-lasting decrease in PF synaptic strength onto Purkinje cells. Here we show that pairing CF activation with bursts of PF activity triggers large (>10 microM) calcium signals in Purkinje cell(More)
It is becoming increasingly clear that single cortical neurons encode complex and behaviorally relevant signals, but efficient means to study gene functions in small networks and single neurons in vivo are still lacking. Here, we establish a method for genetic manipulation and subsequent phenotypic analysis of individual cortical neurons in vivo. First,(More)
Most excitatory synaptic connections occur on dendritic spines. Calcium imaging experiments have suggested that spines constitute individual calcium compartments, but recent results have challenged this idea. Using two-photon microscopy to image fluorescence with high resolution in strongly scattering tissue, we measured calcium dynamics in spines from CA1(More)
Cortical blood flow at the level of individual capillaries and the coupling of neuronal activity to flow in capillaries are fundamental aspects of homeostasis in the normal and the diseased brain. To probe the dynamics of blood flow at this level, we used two-photon laser scanning microscopy to image the motion of red blood cells (RBCs) in individual(More)
Neurons of the mammalian CNS are thought to originate from progenitors dividing at the apical surface of the neuroepithelium. Here we use mouse embryos expressing GFP from the Tis21 locus, a gene expressed throughout the neural tube in most, if not all, neuron-generating progenitors, to specifically reveal the cell divisions that produce CNS neurons. In(More)
The proper connectivity between neurons is essential for the implementation of the algorithms used in neural computations, such as the detection of directed motion by the retina. The analysis of neuronal connectivity is possible with electron microscopy, but technological limitations have impeded the acquisition of high-resolution data on a large enough(More)
The dendrites of mammalian pyramidal neurons contain a rich collection of active conductances that can support Na+ and Ca2+ action potentials (for a review see ref. 1). The presence, site of initiation, and direction of propagation of Na+ and Ca2+ action potentials are, however, controversial, and seem to be sensitive to resting membrane potential, ionic(More)
The detection of image motion is fundamental to vision. In many species, unique classes of retinal ganglion cells selectively respond to visual stimuli that move in specific directions. It is not known which retinal cell first performs the neural computations that give rise to directional selectivity in the ganglion cell. A prominent candidate has been an(More)