Learn More
Fast and efficient numerical solvers for indefinite Helmholtz problems are of great interest in many scientific domains that study acoustic, seismic or electromagnetic wave scattering. Applications such as engine design, oil exploration, medical imaging , but even quantum mechanical problems describing particle interaction [1], are governed by underlying(More)
SUMMARY The basic building blocks of a classic multigrid algorithm, which are essentially stencil computations, all have a low ratio of executed floating point operations per byte fetched from memory. This important ratio can be identified as the arithmetic intensity. Applications with a low arithmetic intensity are typically bounded by memory traffic and(More)
This paper studies and analyzes a preconditioned Krylov solver for Helmholtz problems that are formulated with absorbing boundary layers based on complex coordinate stretching. The preconditioner problem is a Helmholtz problem where not only the coordinates in the absorbing layer have an imaginary part, but also the coordinates in the interior region. This(More)
Despite decades of progress in quantum mechanics, electron correlation effects are still only partially understood. Experiments in which both electrons are ejected from an oriented hydrogen molecule by absorption of a single photon have recently demonstrated a puzzling phenomenon: The ejection pattern of the electrons depends sensitively on the bond(More)