Learn More
In this paper a detailed protocol is presented for neuroscientists planning to start work on first generation recombinant adenoviral vectors as gene transfer agents for the nervous system. The performance of a prototype adenoviral vector encoding the bacterial lacZ gene as a reporter was studied, following direct injection in several regions of the central(More)
Replication deficient recombinant adenoviral vectors are efficient gene transfer agents for postmitotic cells, including neurons and glial cells. In this paper we have examined the effectiveness of adenoviral vector-mediated gene transfer to the olfactory epithelium of adult mice. We show that Ad-LacZ, a prototype first generation adenoviral vector(More)
Ubiquitin-B+1 (UBB+1) is a mutant ubiquitin that accumulates in the neurones of patients with Alzheimer's disease (AD). Here we report on the biochemical and functional differences between ubiquitin and UBB+1 and the effect of the mutant protein on neuronal cells. UBB+1 lacks the capacity to ubiquitinate, and although it is ubiquitinated itself, UBB+1 is(More)
Viral vectors are becoming increasingly important tools to investigate the function of neural proteins and to explore the feasibility of gene therapy to treat diseases of the nervous system. This gene transfer technology is based on the use of a virus as a gene delivery vehicle. In contrast to functional analysis of gene products in transgenic mouse, viral(More)
Following avulsion of a spinal ventral root, motoneurons that project through the avulsed root are axotomized. Avulsion between, for example, L2 and L6 leads to denervation of hind limb muscles. Reimplantation of an avulsed root directed to the motoneuron pool resulted in re-ingrowth of some motor axons. However, most motoneurons display retrograde atrophy(More)
BACKGROUND Inactivating genes in vivo is an important technique for establishing their function in the adult nervous system. Unfortunately, conventional knockout mice may suffer from several limitations including embryonic or perinatal lethality and the compensatory regulation of other genes. One approach to producing conditional activation or inactivation(More)
Rubrospinal neurons (RSNs) undergo marked atrophy after cervical axotomy. This progressive atrophy may impair the regenerative capacity of RSNs in response to repair strategies that are targeted to promote rubrospinal tract regeneration. Here, we investigated whether we could achieve long-term rescue of RSNs from lesion-induced atrophy by adeno-associated(More)
B-50/GAP-43 is an intraneuronal membrane-associated growth cone protein with an important role in axonal growth and regeneration. By using adenoviral vector-directed expression of B-50/GAP-43 we studied the morphogenic action of B-50/GAP-43 in mature primary olfactory neurons that have established functional synaptic connections. B-50/GAP-43 induced gradual(More)
Animal models used to study human aging and neurodegeneration do not display all symptoms of these processes as they are found in humans. Recently, we have shown that many cells in neocortical slices from adult human postmortem brain may survive for extensive periods in vitro. Such cultures may enable us to study age and disease related processes directly(More)
This study describes the creation and application of a defective herpes simplex viral (HSV) vector for B-50/GAP-43, a neural growth-associated phosphoprotein. We demonstrate abundant expression of B-50/GAP-43 in cultured non-neuronal cells (African green monkey kidney cells [vero cells] and Rabbit skin cells) via this HSV vector. When B-50/GAP-43 was(More)