Wim Nerinckx

Learn More
Endo-beta-1,4-D-mannanases (beta-mannanase; EC 3.2.1.78) are endohydrolases that participate in the degradation of hemicellulose, which is closely associated with cellulose in plant cell walls. The beta-mannanase from Trichoderma reesei (Man5A) is composed of an N-terminal catalytic module and a C-terminal carbohydrate-binding module (CBM). In order to(More)
Necrostatin-1 (Nec-1) is widely used in disease models to examine the contribution of receptor-interacting protein kinase (RIPK) 1 in cell death and inflammation. We studied three Nec-1 analogs: Nec-1, the active inhibitor of RIPK1, Nec-1 inactive (Nec-1i), its inactive variant, and Nec-1 stable (Nec-1s), its more stable variant. We report that Nec-1 is(More)
A major extracellular endoglucanase purified to homogeneity from Thermoascus aurantiacus had a M(r) of 34 kDa and a pI of 3.7 and was optimally active at 70-80 degrees C and pH 4.0-4.4. It was stable at pH 2.8-6.8 at 50 degrees C for 48 h and maintained its secondary structure and folded conformation up to 70 degrees C at pH 5.0 and 2.8, respectively. A(More)
Two low molecular mass endo-1,4-beta-D-xylanases from Fusarium oxysporum were purified to homogeneity by gel-filtration and ion-exchange chromatography. They exhibit molecular masses of 20.8 (xylanase I) and 23.5 (xylanase II) kDa, and isoelectric points of 9.5 and 8.45-8.70, respectively. Both xylanases display remarkable pH (9.0) stability. At 40 to 55(More)
An endoxylanase (1,4-beta-D-xylan xylanohydrolase, EC 3.2.1.8) from the culture filtrates of T. lanuginosus ATCC 46882 was purified to homogeneity by DEAE-Sepharose and Bio-Gel P-30 column chromatographies. The purified endoxylanase had a specific activity of 888.8 mumol min-1 mg-1 protein and accounted for approximately 30% of the total protein secreted by(More)
BACKGROUND Cel6A is one of the two cellobiohydrolases produced by Trichoderma reesei. The catalytic core has a structure that is a variation of the classic TIM barrel. The active site is located inside a tunnel, the roof of which is formed mainly by a pair of loops. RESULTS We describe three new ligand complexes. One is the structure of the wild-type(More)
Xylanase III from Fusarium oxysporum F3 was purified to homogeneity by ion-exchange chromatography and gel filtration. The enzyme has a molecular mass of 38 kDa, an isoelectric point of 9.5, and is maximally active on oat spelt xylan at pH 7 and 45 degrees C with a Km of 0.8 mg/mL. The xylanase displays remarkable stability at pH 9.0. It is not active on(More)
The substrate specificity of the xyloglucanase Cel74A from Hypocrea jecorina (Trichoderma reesei) was examined using several polysaccharides and oligosaccharides. Our results revealed that xyloglucan chains are hydrolyzed at substituted Glc residues, in contrast to the action of all known xyloglucan endoglucanases (EC 3.2.1.151). The building block of(More)
Methylumbelliferyl-β-cellobioside (MUF-G2) is a convenient fluorogenic substrate for certain β-glycoside hydrolases (GH). However, hydrolysis of the aglycone is poor with GH family 6 enzymes (GH6), despite strong binding. Prediction of the orientation of the aglycone of MUF-G2 in the +1 subsite of Hypocrea jecorina Cel6A by automated docking suggested(More)
A series of omega-epoxyalkyl glycosides of D-xylopyranose, xylobiose and xylotriose were tested as potential active-site-directed inhibitors of xylanases from glycoside hydrolase families10 and 11. Whereas family-10 enzymes (Thermoascus aurantiacus Xyn and Clostridium thermocellum Xyn Z) are resistant toelectrophilic attack of active-site carboxyl residues,(More)