Learn More
Xiao-Jun Ma,1 Zuncai Wang,2 Paula D. Ryan,3 Steven J. Isakoff,4,5 Anne Barmettler,2 Andrew Fuller,2 Beth Muir,2 Gayatry Mohapatra,2 Ranelle Salunga,1 J. Todd Tuggle,1 Yen Tran,1 Diem Tran,1 Ana Tassin,1 Paul Amon,1 Wilson Wang,1 Wei Wang,1 Edward Enright,1 Kimberly Stecker,1 Eden Estepa-Sabal,1 Barbara Smith,3 Jerry Younger,3 Ulysses Balis,2 James(More)
PURPOSE Histologic tumor grade is a well-established prognostic factor for breast cancer, and tumor grade-associated genes are the common denominator of many prognostic gene signatures. The objectives of this study are as follows: (a) to develop a simple gene expression index for tumor grade (molecular grade index or MGI), and (b) to determine whether MGI(More)
PURPOSE We previously identified three genes, HOXB13, IL17BR and CHDH, and the HOXB13:IL17BR ratio index in particular, that strongly predicted clinical outcome in breast cancer patients receiving tamoxifen monotherapy. Confirmation in larger independent patient cohorts was needed to fully validate their clinical utility. PATIENTS AND METHODS Expression(More)
One of the key challenges in bone healing and regeneration is the engineering of an implant with surface properties that can enhance revascularization to meet the metabolic demands of recovery. Successful implant integration into the surrounding tissue is highly dependent on the crucial role of blood supply in driving bone repair and development.(More)
Titanium (Ti) and its alloys are used extensively in orthopedic implants due to their excellent biocompatibility and mechanical properties. However, titanium-based implant materials have specific complications associated with their applications, such as the loosening of implant-host interface owing to unsatisfactory cell adhesion and the susceptibility of(More)
INTRODUCTION Vascular endothelial growth factor (VEGF) is expressed in osteoarthritic articular cartilage. However, the pattern of VEGF expression throughout the whole life cycle of articular cartilage is not well elucidated. The aim of the study was to investigate the spatiotemporal expression of VEGF and its receptors, vascular endothelial growth factor(More)
Orthopaedic implant technology is heavily based on the development and use of biomaterials. These are non-living materials (e.g. metals, polymers and ceramics) that are introduced into the human body as constituents of implants that fulfill or replace some important function. Examples would be prosthetic joint replacements and fracture fixation implants.(More)
Orthopedic implant failure has been attributed mainly to loosening of the implant from host bone, which may be due to poor bonding of the implant material to bone tissue, as well as to bacterial infection. One promising strategy to enhance tissue integration is to develop a selective biointeractive surface that simultaneously enhances bone cell function(More)
Cobalt chromium (CoCr) alloys are widely used in orthopedic practice, however, lack of integration into the bone for long-term survival often occurs, leading to implant failure. Revision surgery to address such a failure involves increased risks, complications, and costs. Advances to enhancement of bone-implant interactions would improve implant longevity(More)
Direct current (DC) stimulation has been used to promote bone repair and osteogenesis, but problems associated with the implanted metal electrodes may limit its application and compromise the therapeutic results. The replacement of the metal electrodes with a biodegradable conductive polymer film can potentially overcome these problems. In our work,(More)