Learn More
Modern Graphic Processing Units (GPUs) provide sufficiently flexible programming models that understanding their performance can provide insight in designing tomorrow's manycore processors, whether those are GPUs or otherwise. The combination of multiple, multithreaded, SIMD cores makes studying these GPUs useful in understanding tradeoffs among memory,(More)
Recent advances in graphics processing units (GPUs) have resulted in massively parallel hardware that is easily programmable and widely available in commodity desktop computer systems. GPUs typically use single-instruction, multiple-data (SIMD) pipelines to achieve high perfor- mance with minimal overhead incurred by control hard- ware. Scalar threads are(More)
Graphics processor units (GPUs) are designed to efficiently exploit thread level parallelism (TLP), multiplexing execution of 1000s of concurrent threads on a relatively smaller set of single-instruction, multiple-thread (SIMT) cores to hide various long latency operations. While threads within a CUDA block/OpenCL workgroup can communicate efficiently(More)
Recent advances in graphics processing units (GPUs) have resulted in massively parallel hardware that is easily programmable and widely available in today's desktop and notebook computer systems. GPUs typically use single-instruction, multiple-data (SIMD) pipelines to achieve high performance with minimal overhead for control hardware. Scalar threads(More)
Manycore accelerators such as graphics processor units (GPUs) organize processing units into single-instruction, multiple data “cores” to improve throughput per unit hardware cost. Programming models for these accelerators encourage applications to run kernels with large groups of parallel scalar threads. The hardware groups these threads into(More)
While scalable coherence has been extensively studied in the context of general purpose chip multiprocessors (CMPs), GPU architectures present a new set of challenges. Introducing conventional directory protocols adds unnecessary coherence traffic overhead to existing GPU applications. Moreover, these protocols increase the verification complexity of the(More)
Many applications with regular parallelism have been shown to benefit from using Graphics Processing Units (GPUs). However, employing GPUs for applications with irregular parallelism tends to be a risky process, involving significant effort from the programmer. One major, non-trivial effort/risk is to expose the available parallelism in the application as(More)
While many-core accelerator architectures, such as today's Graphics Processing Units (GPUs), offer orders of magnitude more raw computing power than contemporary CPUs, their massive parallelism often produces complex dynamic behaviors even with the simplest applications. Using a fixed set of hardware or simulator performance counters to quantify behavior(More)
Nondeterminism is a key challenge in developing multithreaded applications. Even with the same input, each execution of a multithreaded program may produce a different output. This behavior complicates debugging and limits one's ability to test for correctness. This non-reproducibility situation is aggravated on massively parallel architectures like(More)
This paper proposes an RST-invariant multi-bit watermark-ing system based on LPM and DFT. This system embeds the watermark in a rotation and translation invariant domain obtained by first acquiring log-polar mapped DFT (LPM-DFT) magnitudes of an image, and then taking the magnitude of the 1-dimensional DFT along the angular axis of this LPM-DFT magnitudes.(More)