Wilson S. Geisler

Learn More
A computational approach for analyzing visible textures is described. Textures are modeled as irradiance patterns containing a limited range of spatial frequencies, where mutually distinct textures differ significantly in their dominant characterizing frequencies. By encoding images into multiple narrow spatial frequency and orientation channels, the(More)
The human brain manages to correctly interpret almost every visual image it receives from the environment. Underlying this ability are contour grouping mechanisms that appropriately link local edge elements into global contours. Although a general view of how the brain achieves effective contour grouping has emerged, there have been a number of different(More)
We model a degraded image as an original image that has been subject to linear frequency distortion and additive noise injection. Since the psychovisual effects of frequency distortion and noise injection are independent, we decouple these two sources of degradation and measure their effect on the human visual system. We develop a distortion measure (DM) of(More)
A descriptive function method was used to measure the detection, discrimination, and identification performance of a large population of single neurons recorded from within the primary visual cortex of the monkey and the cat, along six stimulus dimensions: contrast, spatial position, orientation, spatial frequency, temporal frequency, and direction of(More)
Visual stimuli contain a limited amount of information that could potentially be used to perform a given visual task. At successive stages of visual processing, some of this information is lost and some is transmitted to higher stages. This article describes a new analysis, based on the concept of the ideal observer in signal detection theory, that allows(More)
Foveated imaging exploits the fact that the spatial resolution of the human visual system decreases dramatically away from the point of gaze. Because of this fact, large bandwidth savings are obtained by matching the resolution of the transmitted image to the fall-off in resolution of the human visual system. We have developed a foveated multiresolution(More)
The responses of simple cells were recorded from the visual cortex of cats, as a function of the position and contrast of counterphase and drifting grating patterns, to assess whether direction selectivity can be accounted for on the basis of linear summation. The expected responses to a counterphase grating, given a strictly linear model, would be the sum(More)
The environments in which we live and the tasks we must perform to survive and reproduce have shaped the design of our perceptual systems through evolution and experience. Therefore, direct measurement of the statistical regularities in natural environments (scenes) has great potential value for advancing our understanding of visual perception. This review(More)