Wilson Ho Yin Leung

Learn More
Break-induced replication (BIR) is a nonreciprocal recombination-dependent replication process that is an effective mechanism to repair a broken chromosome. We review key roles played by BIR in maintaining genome integrity, including restarting DNA replication at broken replication forks and maintaining telomeres in the absence of telomerase. Previous(More)
Repair of a double-strand break (DSB) in yeast can induce very frequent expansions and contractions in a tandem array of 375-bp repeats. These results strongly suggest that DSB repair can be a major source of amplification of tandemly repeated sequences. Most of the DSB repair events are not associated with crossover. Rearrangements appear in 50% of these(More)
Genomics is not only essential for students to understand biology but also provides unprecedented opportunities for undergraduate research. The goal of the Genomics Education Partnership (GEP), a collaboration between a growing number of colleges and universities around the country and the Department of Biology and Genome Center of Washington University in(More)
The present study explores the use of extrinsic context in perceptual normalization for the purpose of identifying lexical tones in Cantonese. In each of four experiments, listeners were presented with a target word embedded in a semantically neutral sentential context. The target word was produced with a mid level tone and it was never modified throughout(More)
There is widespread agreement that science, technology, engineering, and mathematics programs should provide undergraduates with research experience. Practical issues and limited resources, however, make this a challenge. We have developed a bioinformatics project that provides a course-based research experience for students at a diverse group of schools(More)
Various studies suggest that eukarytoic chromosomes may occupy distinct territories within the nucleus and that chromosomes are tethered to a nuclear matrix. These constraints might limit interchromosomal interactions. We have used a molecular genetic test to investigate whether the chromosomes of Saccharomyces cerevisiae exhibit such territoriality. A(More)
The presence of multiple heterologies in a 9-kilobase (kb) interval results in a decrease in meiotic crossovers from 26.0% to 10.1%. There is also an increase from 3.5% to 11.1% in gene conversions and ectopic recombinations between the flanking homologous MAT loci. The hypothesis that mismatch repair of heteroduplex DNA containing several heterologies(More)
To study targeted recombination, a single linear 2-kb fragment of LEU2 DNA was liberated from a chromosomal site within the nucleus of Saccharomyces cerevisiae, by expression of the site-specific HO endonuclease. Gene targeting was scored by gene conversion of a chromosomal leu2 mutant allele by the liberated LEU2 fragment. This occurred at a frequency of(More)
Chromosome four of Drosophila melanogaster, known as the dot chromosome, is largely heterochromatic, as shown by immunofluorescent staining with antibodies to heterochromatin protein 1 (HP1) and histone H3K9me. In contrast, the absence of HP1 and H3K9me from the dot chromosome in D. virilis suggests that this region is euchromatic. D. virilis diverged from(More)
The banded portion of Drosophila melanogaster chromosome 4 exhibits euchromatic and heterochromatic characteristics. Reminiscent of heterochromatin, it contains a high percentage of repetitive elements, does not undergo recombination, and exhibits high levels of HP1 and histone-3 lysine-9 dimethylation. However, in the distal 1.2 Mb, the gene density is(More)