Wilmar Hernandez

Learn More
In this paper a survey on recent applications of optimal signal processing techniques to improve the performance of mechanical sensors is made. Here, a comparison between classical filters and optimal filters for automotive sensors is made, and the current state of the art of the application of robust and optimal control and signal processing techniques to(More)
In this paper, a sensor to measure the rollover angle of a car under performance tests is presented. Basically, the sensor consists of a dual-axis accelerometer, analog-electronic instrumentation stages, a data acquisition system and an adaptive filter based on a recursive least-squares (RLS) lattice algorithm. In short, the adaptive filter is used to(More)
In this paper, we propose a low-cost contact-free measurement system for both 3-D data acquisition and fast surface parameter registration by digitized points. Despite the fact that during the last decade several approaches for both contact-free measurement techniques aimed at carrying out object surface recognition and 3-D object recognition have been(More)
In this paper an input-output transfer function analysis based on the frequency response of a photometer circuit based on operational amplifier (op amp) is carried out. Op amps are universally used in monitoring photodetectors and there are a variety of amplifier connections for this purpose. However, the electronic circuits that are usually used to carry(More)
In this paper, the least-mean-squares (LMS) algorithm was used to eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications. This kind of accelerometer is designed to be easily mounted in hard to reach places on vehicles under test, and they usually feature ranges from 50 to 2,000 g (where(More)
In this paper the uncertainty of a robust photometer circuit (RPC) was estimated. Here, the RPC was considered as a measurement system, having input quantities that were inexactly known, and output quantities that consequently were also inexactly known. Input quantities represent information obtained from calibration certificates, specifications of(More)
This paper proposes a resonant electric cradle design with infant cries recognition, employing an Arduino UNO as the core processor. For most commercially available electric cradles, the drive motor is closely combined with the bearing on the top, resulting in a lot of energy consumption. In this proposal, a ball bearing design was adopted and the driving(More)