Learn More
Two potent hypotensive peptides, adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP), are encoded by the adrenomedullin gene. AM stimulates nitric oxide production by endothelial cells, whereas PAMP acts presynaptically to inhibit adrenergic nerves that innervate blood vessels. Complementary, but mechanistically unique, actions also occur(More)
Nesfatin-1 is a newly-discovered satiety peptide found in several nuclei of the hypothalamus, including the paraventricular nucleus. To begin to understand the physiological mechanisms underlying these satiety-inducing actions, we examined the effects of nesfatin-1 on the excitability of neurones in the paraventricular nucleus. Whole-cell current-clamp(More)
The hypocretins, also known as the orexins, are alternate translation products of a single gene. The recognition of their production in neurons of the rostral diencephalon, and their axonal localization in brain sites known to be important in the control of appetite, led to the demonstration of their orexogenic actions. However, these peptides are not as(More)
Intermedin (IMD)/adrenomedullin-2 (AM2) is a novel peptide that was independently discovered by two groups. The 47-amino acid peptide is homologous to adrenomedullin (AM) and can activate both the AM and calcitonin gene-related peptide (CGRP) receptors. IMD should therefore have actions similar to those of AM and CGRP. Indeed, like AM and CGRP, intravenous(More)
Accumulating evidence has indicated that insulin-like growth factor-1 (IGF-1) plays a specific role in the intricate cascade of events of cardiovascular function, in addition to its well established growth-promoting and metabolic effects. IGF-1 is believed to mediate many effects of growth hormone (GH), IGF-1 promotes cardiac growth, improves cardiac(More)
The physiological relevance of the recently described prolactin-releasing peptides (PrRPs) has yet to be established. Here, we demonstrate the low potency of the PrRPs (minimum effective dose: 100 nM), compared to that observed for thyrotropin-releasing hormone (TRH, minimum effective dose: 1.0 nM), to stimulate prolactin (PRL) release from cultured(More)
Adiponectin plays important roles in the control of energy homeostasis and autonomic function through peripheral and central nervous system actions. The paraventricular nucleus (PVN) of the hypothalamus is a primary site of neuroendocrine (NE) and autonomic integration, and, thus, a potential target for adiponectin actions. Here, we investigate actions of(More)
Neuropeptide W (NPW) is produced in neurons located in hypothalamus and brain stem, and its receptors are present in the hypothalamus, in particular in the paraventricular nucleus (PVN). Intracerebroventricular (ICV) administration of NPW activated, in a dose-related fashion, the hypothalamic-pituitary-adrenal axis, as determined by plasma corticosterone(More)
The endogenous, peptide ligand for the orphan receptors GPR7 and GPR8 was identified to be neuropeptide W (NPW). Because these receptors are expressed in brain and in particular in hypothalamus, we hypothesized that NPW might interact with neuroendocrine systems that control hormone release from the anterior pituitary gland. No significant effects of NPW(More)