Learn More
Nesfatin-1 is a newly-discovered satiety peptide found in several nuclei of the hypothalamus, including the paraventricular nucleus. To begin to understand the physiological mechanisms underlying these satiety-inducing actions, we examined the effects of nesfatin-1 on the excitability of neurones in the paraventricular nucleus. Whole-cell current-clamp(More)
Neuropeptide B (NPB) was identified to be an endogenous, peptide ligand for the orphan receptors GPR7 and GPR8. Because GPR7 is expressed in rat brain and, in particular, in the hypothalamus, we hypothesized that NPB might interact with neuroendocrine systems that control hormone release from the anterior pituitary gland. No significant effects of NPB were(More)
Neuropeptide W (NPW) is produced in neurons located in hypothalamus and brain stem, and its receptors are present in the hypothalamus, in particular in the paraventricular nucleus (PVN). Intracerebroventricular (ICV) administration of NPW activated, in a dose-related fashion, the hypothalamic-pituitary-adrenal axis, as determined by plasma corticosterone(More)
The hypocretins, also known as the orexins, are alternate translation products of a single gene. The recognition of their production in neurons of the rostral diencephalon, and their axonal localization in brain sites known to be important in the control of appetite, led to the demonstration of their orexogenic actions. However, these peptides are not as(More)
The hypocretins/orexins are hypothalamic peptides most recognized for their significant effects on feeding and arousal. Indeed, loss of the peptides results in a cataplexy quite similar to that observed canine models of human narcolepsy. However, neurons producing these peptides project to numerous brain sites known to be important in neuroendocrine(More)
BACKGROUND The paraventricular nucleus of the hypothalamus (PVN) has emerged as one of the most important autonomic control centers in the brain, with neurons playing essential roles in controlling stress, metabolism, growth, reproduction, immune and other more traditional autonomic functions (gastrointestinal, renal and cardiovascular). OBJECTIVES(More)
The physiological relevance of the recently described prolactin-releasing peptides (PrRPs) has yet to be established. Here, we demonstrate the low potency of the PrRPs (minimum effective dose: 100 nM), compared to that observed for thyrotropin-releasing hormone (TRH, minimum effective dose: 1.0 nM), to stimulate prolactin (PRL) release from cultured(More)
The hypocretin/orexins (Hcrts/ORXs) are peptides produced in neurons in the lateral hypothalamic area that project to neuroendocrine centers in the hypothalamus. Hcrt/ORX receptors are present in the hypothalamus and anterior pituitary gland. We examined the possibility that the Hcrts/ORXs, which we have demonstrated previously to act in the brain to(More)
Although the novel satiety factor nesfatin-1 has been shown to influence feeding behavior through effects on melanocortin signaling, the specific hypothalamic neuronal substrates through which such effects are mediated have yet to be elucidated. To identify neuronal cell types potentially important in mediating nesfatin-1's effects, whole cell current clamp(More)