Willis Kendrick Samson

Learn More
Accumulating evidence has indicated that insulin-like growth factor-1 (IGF-1) plays a specific role in the intricate cascade of events of cardiovascular function, in addition to its well established growth-promoting and metabolic effects. IGF-1 is believed to mediate many effects of growth hormone (GH), IGF-1 promotes cardiac growth, improves cardiac(More)
Nesfatin-1 is a newly-discovered satiety peptide found in several nuclei of the hypothalamus, including the paraventricular nucleus. To begin to understand the physiological mechanisms underlying these satiety-inducing actions, we examined the effects of nesfatin-1 on the excitability of neurones in the paraventricular nucleus. Whole-cell current-clamp(More)
Obesity is commonly associated with impaired myocardial contractile function. However, a direct link between these 2 states has not yet been established. There has been an indication that leptin, the product of the human obesity gene, may play a role in obesity-related metabolic and cardiovascular dysfunctions. The purpose of this study was to determine(More)
Orexinergic neurons originating in the perifornical, lateral hypothalamus project to numerous brain sites including neuroendocrine centers known to be important in the physiologic response to stress. Those projections suggest an action of endogenous orexin on adrenocorticotropin (ACTH) release, either by neuromodulatory effects in the paraventricular(More)
Nesfatin-1 is an 82-amino acid protein encoded by the nucleobindin2 gene. When injected intracerebroventricularly, nesfatin-1, via a melanocortin 3/4 receptor-dependent mechanism, potently decreased both food and water intakes and elevated mean arterial pressure in a dose-related manner. Because nesfatin-1 colocalized with oxytocin in hypothalamus and(More)
Adiponectin plays important roles in the control of energy homeostasis and autonomic function through peripheral and central nervous system actions. The paraventricular nucleus (PVN) of the hypothalamus is a primary site of neuroendocrine (NE) and autonomic integration, and, thus, a potential target for adiponectin actions. Here, we investigate actions of(More)
Neuropeptide W (NPW) is produced in neurons located in hypothalamus and brain stem, and its receptors are present in the hypothalamus, in particular in the paraventricular nucleus (PVN). Intracerebroventricular (ICV) administration of NPW activated, in a dose-related fashion, the hypothalamic-pituitary-adrenal axis, as determined by plasma corticosterone(More)
Two potent hypotensive peptides, adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP), are encoded by the adrenomedullin gene. AM stimulates nitric oxide production by endothelial cells, whereas PAMP acts presynaptically to inhibit adrenergic nerves that innervate blood vessels. Complementary, but mechanistically unique, actions also occur(More)
We investigated the effects of a constant infusion of adrenomedullin (ADM) on renal hemodynamics and fluid electrolyte excretion in the rat. Following baseline measurements, eight rats received an intravenous infusion of 5 micrograms of rat ADM (167 ng/min) for 30 min at 10 microliters/min. Eight additional rats received 0.9% saline at 10 microliters/min(More)