Learn More
Brief exposure of rodents to estrogens during early development alters prostate branching morphogenesis and cellular differentiation in a dose-dependant manner. If estrogenic exposures are high, these disturbances lead to permanent imprints of the prostate, which include reduced growth, differentiation defects of the epithelial cells, altered secretory(More)
A series of selective androgen receptor modulators (SARMs) with a wide spectrum of receptor modulating activities was developed based on optimization of the 4-substituted 6-bisalkylamino-2-quinolinones (3). Significance of the trifluoromethyl group on the side chains and its interactions with amino acid residues within the androgen receptor (AR) ligand(More)
Neonatal exposure to estrogens permanently alters rat prostate growth and epithelial differentiation leading to prostatic dysplasia on aging. The effects are lobe-specific, with the greatest response observed in the ventral lobe. Recently, a novel estrogen receptor (ER) complementary DNA was cloned from the rat prostate and termed ER-beta (ER beta) due to(More)
The purpose of this study was to examine whether changes in extracellular matrix (ECM) molecules are associated with the growth inhibition and differentiation defects of the prostate gland following neonatal exposure to estradiol. Using immunocytochemistry (ICC), laminin and collagen IV were localized to the basement membrane (BM) as well to the basal(More)
A number of conditions, including osteoporosis, frailty, and sexual dysfunction in both men and women have been improved using androgens. However, androgens are not widely used for these indications because of the side effects associated with these drugs. We describe an androgen receptor (AR) ligand that maintains expected anabolic activities with(More)
Estrogens can have profound effects on prostate growth and differentiation. These effects were thought to be mediated by the classical estrogen receptor; however, the discovery of a second estrogen receptor has redefined the estrogen signaling pathway and may have broad implications on estrogen-responsive tissues, including the prostate. The new estrogen(More)
The spinal nucleus of the bulbocavernosus (SNB) neuromuscular system is a highly conserved and well-studied model of sexual differentiation of the vertebrate nervous system. Sexual differentiation of the SNB is currently thought to be mediated by the direct action of perinatal testosterone on androgen receptors (ARs) in the bulbocavernosus/levator ani(More)
Brief exposure to estrogens during the neonatal period interrupts rat prostatic development by reducing branching morphogenesis and by blocking epithelial cells from entering a normal differentiation pathway. Upon aging, ventral prostates exhibit extensive hyperplasia and dysplasia suggesting that neonatal estrogens may predispose the prostate gland to(More)
Exposure to estrogens during the neonatal period interrupts rat prostatic development by reducing branching morphogenesis and by blocking epithelial cells from entering a normal differentiation pathway. Upon aging, ventral prostates exhibit extensive hyperplasia, dysplasia, and massive lymphocytic infiltrate, suggesting that neonatal estrogens may(More)