William Wisden

Learn More
The embryonic and postnatal expression of 13 GABAA receptor subunit genes in the rat CNS was studied by in situ hybridization. Each transcript exhibited a unique regional and temporal developmental expression profile. For example, in both embryonic and early postnatal cortex and thalamus, expression of the alpha 2, alpha 3, alpha 5, and beta 3 mRNAs was(More)
The expression patterns of 13 GABAA receptor subunit encoding genes (alpha 1-alpha 6, beta 1-beta 3, gamma 1-gamma 3, delta) were determined in adult rat brain by in situ hybridization. Each mRNA displayed a unique distribution, ranging from ubiquitous (alpha 1 mRNA) to narrowly confined (alpha 6 mRNA was present only in cerebellar granule cells). Some(More)
Four cloned cDNAs encoding 900-amino acid putative glutamate receptors with approximately 70 percent sequence identity were isolated from a rat brain cDNA library. In situ hybridization revealed differential expression patterns of the cognate mRNAs throughout the brain. Functional expression of the cDNAs in cultured mammalian cells generated receptors(More)
In the central nervous system (CNS), the principal mediators of fast synaptic excitatory neurotransmission are L-glutamate-gated ion channels that are responsive to the glutamate agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA). In each member of a family of four abundant AMPA receptors, a small segment preceding the predicted fourth(More)
In an effort to determine subunit compositions of in vivo GABAA receptors, the cellular localization of 13 subunit encoding mRNAs (alpha 1-alpha 6, beta 1-beta 3, gamma 2-gamma 3, delta) was determined in the rat olfactory bulb and cerebellum. Cerebellar granule cells expressed significant quantities of alpha 1, alpha 6, beta 2, beta 3, gamma 2, and delta(More)
Many neurons receive a continuous, or 'tonic', synaptic input, which increases their membrane conductance, and so modifies the spatial and temporal integration of excitatory signals. In cerebellar granule cells, although the frequency of inhibitory synaptic currents is relatively low, the spillover of synaptically released GABA (gamma-aminobutyric acid)(More)
A new ionotropic glutamate receptor subunit termed KA-2, cloned from rat brain cDNA, exhibits high affinity for [3H]kainate (KD approximately 15 nM). KA-2 mRNA is widely expressed in embryonic and adult brain. Homomeric KA-2 expression does not generate agonist-sensitive channels, but currents are observed when KA-2 is coexpressed with GluR5 or GluR6(More)
Kainate-preferring receptors are a subclass of ionotropic glutamate receptors that might play a role in brain development. The expression of the five known genes encoding kainate receptor subunits (GluR-5, -6, -7, KA-1, and KA-2) was studied by in situ hybridization during pre- and postnatal development of the rat brain. We compared the combined expression(More)
The significance for CNS function of glutamate-gated cation channels that exhibit high-affinity kainate sites is not understood. Such receptors, which on dorsal root ganglia and in recombinant systems exhibit currents that rapidly desensitize to kainate application, have not been detected electrophysiologically in the brain. However, a comparison of the(More)
We have demonstrated that immediate early genes can be differentially activated within the central nervous system. We examined the effects of tetanic stimulation in the hippocampus and of noxious sensory stimulation of the spinal cord on the expression of eight immediate early genes. Induction of long-term potentiation (LTP) in the dentate gyrus resulted in(More)