Learn More
Elastin fragmentation is a common characteristic of vascular diseases, such as abdominal aortic aneurysms, peripheral arterial disease, and aortic dissection. Examining growth and remodeling in the presence of dysfunctional elastic fibers provides insight into the adaptive or maladaptive changes that tissues undergo in compensating for structural(More)
The causality of the associations between cellular and mechanical mechanisms of abdominal aortic aneurysm (AAA) formation has not been completely defined. Because reactive oxygen species are established mediators of AAA growth and remodeling, our objective was to investigate oxidative stress-induced alterations in aortic biomechanics and microstructure(More)
Changes in the local mechanical environment and tissue mechanical properties affect the biological activity of cells and play a key role in a variety of diseases, such as cancer, arthritis, nephropathy, and cardiovascular disease. Constitutive relations have long been used to predict the local mechanical environment within biological tissues and to(More)
Good predictions of the local mechanical environment of the tissue with known geometry and applied loads are fundamental to quantifying the biological response of tissues to mechanical stimuli. Whereas mean stresses in cylindrical sections of blood vessels may be calculated directly from measured loads and vessel geometry (e.g., Laplace's law), predicting(More)
Alteration in the mechanical properties of arteries occurs with aging and disease, and arterial stiffening is a key risk factor for subsequent cardiovascular events. Arterial stiffening is associated with the loss of functional elastic fibers and increased collagen content in the wall of large arteries. Arterial mechanical properties are controlled largely(More)
In contrast to the widely applied approach to model soft tissue remodeling employing the concept of volumetric growth, microstructurally motivated models are capable of capturing many of the underlying mechanisms of growth and remodeling; i.e., the production, removal, and remodeling of individual constituents at different rates and to different extents. A(More)
It is becoming evident that tissue-engineered constructs adapt to altered mechanical loading, and that specific combinations of multidirectional loads appear to have a synergistic effect on the remodeling. However, most studies of mechanical stimulation of engineered vascular tissue engineering employ only uniaxial stimulation. Here we present a novel(More)
  • 1