Learn More
We give a purely model-theoretic characterization of the semantics of logic programs with negation-as-failure allowed in clause bodies. In our semantics, the meaning of a program is, as in the classical case, the unique <i>minimum</i> model in a program-independent ordering. We use an expanded truth domain that has an uncountable linearly ordered set of(More)
We propose a purely extensional semantics for higher-order logic programming. In this semantics program predicates denote sets of ordered tuples, and two predicates are equal iff they are equal as sets. Moreover, every program has a unique minimum Herbrand model which is the greatest lower bound of all Herbrand models of the program and the least(More)
In this paper, we propose a preference framework for information retrieval in which the user and the system administrator are enabled to express preference annotations on search keywords and document elements, respectively. Our framework is flexible and allows expressing preferences such as " A is infinitely more preferred than B, " which we capture by(More)
In this paper we demonstrate that a broad class of higher-order functional programs can be transformed into semantically equivalent multidimensional intensional programs that contain only nullary variable definitions. The proposed algorithm systematically eliminates user-defined functions from the source program, by appropriately introducing context(More)