William W. Lytton

Learn More
In standard experimental environments, a constant proportion of CA1 principal cells are place cells, each with a spatial receptive field called a place field. Although the properties of place cells are a basis for understanding the mammalian representation of spatial knowledge, there is no consensus on which of the two fundamental neural-coding hypotheses(More)
Hippocampus place cell discharge is an important model system for understanding cognition, but evidence is missing that the place code is under the kind of dynamic attentional control characterized in primates as selective activation of one neural representation and suppression of another, competing representation. We investigated the apparent noise(More)
The NEURON simulation environment has been extended to support parallel network simulations. Each processor integrates the equations for its subnet over an interval equal to the minimum (interprocessor) presynaptic spike generation to postsynaptic spike delivery connection delay. The performance of three published network models with very different spike(More)
High computational requirements in realistic neuronal network simulations have led to attempts to realize implementation efficiencies while maintaining as much realism as possible. Since the number of synapses in a network will generally far exceed the number of neurons, simulation of synaptic activation may be a large proportion of total processing time.(More)
Epilepsy is a complex set of disorders that can involve many areas of the cortex, as well as underlying deep-brain systems. The myriad manifestations of seizures, which can be as varied as déjà vu and olfactory hallucination, can therefore give researchers insights into regional functions and relations. Epilepsy is also complex genetically and(More)
Coordination of neocortical oscillations has been hypothesized to underlie the "binding" essential to cognitive function. However, the mechanisms that generate neocortical oscillations in physiological frequency bands remain unknown. We hypothesized that interlaminar relations in neocortex would provide multiple intermediate loops that would play particular(More)
Samuel A. Neymotin,1* Maciej T. Lazarewicz,4* Mohamed Sherif,2 Diego Contreras,5 Leif H. Finkel,4 and William W. Lytton1,3,6 1State University of New York (SUNY) Downstate/New York University-Poly Joint Biomedical Engineering Program, Brooklyn, New York 11201, Departments of 2Psychiatry and Behavioral Sciences, and 3Physiology and Pharmacology, and(More)
Calcium (Ca²⁺) waves provide a complement to neuronal electrical signaling, forming a key part of a neuron's second messenger system. We developed a reaction-diffusion model of an apical dendrite with diffusible inositol triphosphate (IP₃), diffusible Ca²⁺, IP₃ receptors (IP₃Rs), endoplasmic reticulum (ER) Ca²⁺ leak, and ER pump (SERCA) on ER. Ca²⁺ is(More)
In order to support research on the role of cell biological principles (genomics, proteomics, signaling cascades and reaction dynamics) on the dynamics of neuronal response in health and disease, NEURON's Reaction-Diffusion (rxd) module in Python provides specification and simulation for these dynamics, coupled with the electrophysiological dynamics of the(More)
Ih channels are uniquely positioned to act as neuromodulatory control points for tuning hippocampal theta (4-12 Hz) and gamma (25 Hz) oscillations, oscillations which are thought to have importance for organization of information flow. contributes to neuronal membrane resonance and resting membrane potential, and is modulated by second messengers. We(More)