Learn More
Multivariate clustering based on fine spatial resolution maps of elevation, temperature, precipitation, soil characteristics, and solar inputs has been used at several specified levels of division to produce a spectrum of quantitative ecoregion maps for the conterminous United States. The coarse ecoregion divisions accurately capture intuitively-understood(More)
Lacunarity analysis is a multiscaled method for describing patterns of spatial dispersion. It can be used with both binary and quantitative data in one, two, and three dimensions. Although originally developed for fractal objects, the method is more general and can be readily used to describe nonfractal and multifractal patterns. Lacunarity analysis is(More)
We describe the Pathway Analysis Through Habitat (PATH) tool, which can predict the location of potential corridors of animal movement between patches of habitat within any map. The algorithm works by launching virtual entities that we call 'walkers' from each patch of habitat in the map, simulating their travel as they journey through land cover types in(More)
The AmeriFlux network of eddy flux covari-ance towers was established to quantify variation in carbon dioxide and water vapor exchange between terrestrial ecosystems and the atmosphere ,and to understand the underlying mechanisms responsible for observed fluxes and carbon pools.The network is primarily funded by the U. The existing AmeriFlux network will(More)
We coupled an individual-based model of brook trout (Salvelinus fontinalis) and rainbow trout (Oncorhynchus mykiss) with a geographic information system (GIS) database to predict climate change effects on southern Appalachian stream populations. The model tracked individuals of both species through the daily processes of spawning, growth, feeding,(More)
A broad-scale probabilistic model of forest fires, EMBYR, has been developed to simulate the effects of large fires burning through heterogeneous landscapes. Fire ignition and spread are simulated on a gridded landscape by (1) examining each burning site at each time step, (2) independently evaluating the probability of spread to eight neighbors based on(More)
Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing(More)
Identification of geographic ecoregions has long been of interest to environmental scientists and ecologists for identifying regions of similar ecological and environmental conditions. Such classifications are important for predicting suitable species ranges, for stratification of ecological samples, and to help prioritize habitat preservation and(More)
We present Mapcurves, a quantitative goodness-of-fit (GOF) method that unambiguously shows the degree of spatial concordance between two or more categorical maps. Mapcurves graphically and quantitatively evaluate the degree of fit among any number of maps and quantify a GOF for each polygon, as well as the entire map. The Mapcurve method indicates a perfect(More)