Learn More
A seventh order of methanogens, the Methanomassiliicoccales, has been identified in diverse anaerobic environments including the gastrointestinal tracts (GIT) of humans and other animals and may contribute significantly to methane emission and global warming. Methanomassiliicoccales are phylogenetically distant from all other orders of methanogens and(More)
"Candidatus Methanomassiliicoccus intestinalis" Issoire-Mx1 is a methanogenic archaeon found in the human gut and is a representative of the novel order of methanogens related to Thermoplasmatales. Its complete genome sequence is presented here.
Evaluating the composition of the human gut microbiota greatly facilitates studies on its role in human pathophysiology, and is heavily reliant on culture-independent molecular methods. A microarray designated the Human Gut Chip (HuGChip) was developed to analyze and compare human gut microbiota samples. The PhylArray software was used to design specific(More)
Trimethylamine (TMA) is produced by gut bacteria from dietary ingredients. In individuals with a hereditary defect in flavin-containing monooxygenase 3, bacterial TMA production is believed to contribute to the symptoms of trimethylaminuria (TMAU; fish-odor syndrome). Intestinal microbiota TMA metabolism may also modulate atherosclerosis risk by affecting(More)
We report the draft genome sequence of "Candidatus Methanomethylophilus alvus" Mx1201, a methanogen present in the human gut. It was enriched from human feces under anaerobic conditions with methanol as the substrate. Its circular genome, of around 1.7 Mb, contains genes needed for methylotrophic methanogenesis from methanol and tri-, di-, and(More)
Methanogenic archaea are known as human gut inhabitants since more than 30 years ago through the detection of methane in the breath and isolation of two methanogenic species belonging to the order Methanobacteriales, Methanobrevibacter smithii and Methanosphaera stadtmanae. During the last decade, diversity of archaea encountered in the human(More)
The technical and ethical difficulties in studying the gut microbiota in vivo warrant the development and improvement of in vitro systems able to simulate and control the physicochemical factors of the gut biology. Moreover, the functional regionalization of this organ implies a model simulating these differences. Here we propose an improved and alternative(More)
Reported failures with gnotobiotic animal models led us to establish an in-vitro model of reciprocal conversion of methanogenic and non methanogenic microbiota from human fecal samples. Consequences on gas and microbiota compositions are reported. This should facilitate the study of the controversial role of gut methanogens in human health.
Background/Aims Human gut microbiota harbors numerous metabolic properties essential for the host's health. Increased intestinal transit time affects a part of the population and is notably observed with human aging, which also corresponds to modifications of the gut microbiota. Thus we tested the metabolic and compositional changes of a human gut(More)
BACKGROUND Whole rye (WR) consumption seems to be associated with beneficial health effects. Although rye fiber and polyphenols are thought to be bioactive, the mechanisms behind the health effects of WR have yet to be fully identified. This study in rats was designed to investigate whether WR can influence the metabolism of n-3 and n-6 long-chain fatty(More)