William T. K. Johnson

Learn More
The surface of Saturn's haze-shrouded moon Titan has long been proposed to have oceans or lakes, on the basis of the stability of liquid methane at the surface. Initial visible and radar imaging failed to find any evidence of an ocean, although abundant evidence was found that flowing liquids have existed on the surface. Here we provide definitive evidence(More)
The Cassini Titan Radar Mapper imaged about 1% of Titan's surface at a resolution of approximately 0.5 kilometer, and larger areas of the globe in lower resolution modes. The images reveal a complex surface, with areas of low relief and a variety of geologic features suggestive of dome-like volcanic constructs, flows, and sinuous channels. The surface(More)
The most recent Cassini RADAR images of Titan show widespread regions (up to 1500 kilometers by 200 kilometers) of near-parallel radar-dark linear features that appear to be seas of longitudinal dunes similar to those seen in the Namib desert on Earth. The Ku-band (2.17-centimeter wavelength) images show approximately 100-meter ridges consistent with(More)
The martian subsurface has been probed to kilometer depths by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument aboard the Mars Express orbiter. Signals penetrate the polar layered deposits, probably imaging the base of the deposits. Data from the northern lowlands of Chryse Planitia have revealed a shallowly buried quasi-circular(More)
Cassini's Titan Radar Mapper imaged the surface of Saturn's moon Titan on its February 2005 fly-by (denoted T3), collecting high-resolution synthetic-aperture radar and larger-scale radiometry and scatterometry data. These data provide the first definitive identification of impact craters on the surface of Titan, networks of fluvial channels and surficial(More)
Near-surface seawater from the northeastern subarctic Pacific was incubated on deck for 8 d, supplemented with (1) control, no additions (2) ϩZn (3) ϩFe (4) ϩZnϩFe. Concentrations of total Zn and Fe at time zero (t 0) and in the control remained at ϳ0.1–0.2 nmol L Ϫ1. In the control, chlorophyll (Ͻ0.3 mg m Ϫ3), 14 C uptake into POC and PIC, and inorganic(More)
A design constraint traceable to the early days of spacebome Synthetic Apema'e Radar (SAR) is known as the minimum antenna area constraint for SAR. In this paper, it is confirmed that this constraint strictly applies only to the case where both the best possible resolution and the widest possible swath are the design goals. SAR antennas with area smaller(More)
The Magellan Venus orbiter carries only one scientific instrument: a 12.6-centimeter wavelength radar system shared among three data-taking modes. The synthetic-aperture mode images radar echoes from the Venus surface at a resolution of between 120 and 300 meters, depending on spacecraft altitude. In the altimetric mode, relative height measurement(More)
Ground-based observations have shown that Jupiter is a two-component source of microwave radio emission: thermal atmospheric emission and synchrotron emission from energetic electrons spiralling in Jupiter's magnetic field. Later in situ measurements confirmed the existence of Jupiter's high-energy electron-radiation belts, with evidence for electrons at(More)
The Cassini Radio Detection and Ranging (RADAR) was operated in scatterometric and radiometric modes during the Venus 1 and Earth swingbys to verify its functionality. At Venus, only the thermal emission from the thick absorbing atmosphere was detected. At Earth both the radar echo and the microwave emission from the surface were detected and reveal ocean(More)