William T. Joines

Learn More
Fertilized eggs of Gallus domesticus were exposed continuously during their 21-day incubation period to either 50- or 60-Hz sinusoidal electric fields at an average intensity of 10 Vrms/m. The exposure apparatus was housed in an environmental room maintained at 37 degrees C and 55-60% relative humidity (RH). Within 1.5 days after hatching, the chickens were(More)
We have previously shown that 16-Hz, sinusoidal electromagnetic fields can cause enhanced efflux of calcium ions from chick brain tissue, in vitro, in two intensity regions centered on 6 and 40 Vp-p/m. Alternatively, 1-Hz and 30-Hz fields at 40 Vp-p/m did not cause enhanced efflux. We now demonstrate that although there is no enhanced efflux associated with(More)
Active microwave imaging (MWI) is emerging as a promising technique for the detection of biomedical anomalies such as breast cancer because of the high electrical contrasts between malignant tumors and normal tissue. Previously, we have developed fast two-dimensional forward and inverse scattering algorithms for MWI systems. In this paper, we report the(More)
Autoradiographic maps of brain activity in rats exposed to pulsed or continuous-wave (CW) microwave radiation were made using [14C]2-deoxy-D-glucose ([14C]2-DG). Special emphasis was given to measurements of activity in the auditory system because previous work had shown that pulsed microwave radiation can elicit auditory responses in man and other animals.(More)
Presented here are the numerical relationships between incident power densities that produce the same average electric field intensity within a chick brain half immersed in buffered saline solution and exposed to a uniform electromagnetic field at carrier frequencies of 50, 147, and 450 MHz. Calculations are based on modeling the buffer solution as a(More)
(a balanced to unbalanced adapter), and avoid using a T-shaped structure (as for the two-wire dipole). Since coaxial antennas extend along a straight line and can have almost any radius, they may be easily inserted into confined spaces that require an antenna. For example, in cancer therapy, the cancerous region may be heated by microwaves using an C oaxial(More)
An electrically small antenna connected directly to a complementary pair of switching transistors is driven with a pulsewidth modulated HF signal, eliminating the requirement for a frequency-dependent impedance-matching network. The intrinsic reactance of the transmit and receive antennas acts as a filter to recover the HF signal from the digital pulse(More)