William T Beeson

Learn More
The high cost of enzymes for saccharification of lignocellulosic biomass is a major barrier to the production of second generation biofuels. Using a combination of genetic and biochemical techniques, we report that filamentous fungi use oxidative enzymes to cleave glycosidic bonds in cellulose. Deletion of cdh-1, the gene encoding the major cellobiose(More)
The ubiquitous fungal polysaccharide monooxygenases (PMOs) (also known as GH61 proteins, LPMOs, and AA9 proteins) are structurally related but have significant variation in sequence. A heterologous expression method in Neurospora crassa was developed as a step toward connecting regioselectivity of the chemistry to PMO phylogeny. Activity assays, as well as(More)
Fungal degradation of plant biomass may provide insights for improving cellulosic biofuel production. We show that the model cellulolytic fungus Neurospora crassa relies on a high-affinity cellodextrin transport system for rapid growth on cellulose. Reconstitution of the N. crassa cellodextrin transport system in Saccharomyces cerevisiae promotes efficient(More)
Fungal-derived, copper-dependent polysaccharide monooxygenases (PMOs), formerly known as GH61 proteins, have recently been shown to catalyze the O(2)-dependent oxidative cleavage of recalcitrant polysaccharides. Different PMOs isolated from Neurospora crassa were found to generate oxidized cellodextrins modified at the reducing or nonreducing ends upon(More)
The use of cellulases remains a major cost in the production of renewable fuels and chemicals from lignocellulosic biomass. Fungi secrete copper-dependent polysaccharide monooxygenases (PMOs) that oxidatively cleave crystalline cellulose and improve the effectiveness of cellulases. However, the means by which PMOs recognize and cleave their substrates in(More)
Polysaccharide monooxygenases (PMOs), also known as lytic PMOs (LPMOs), enhance the depolymerization of recalcitrant polysaccharides by hydrolytic enzymes and are found in the majority of cellulolytic fungi and actinomycete bacteria. For more than a decade, PMOs were incorrectly annotated as family 61 glycoside hydrolases (GH61s) or family 33(More)
The recently discovered fungal and bacterial polysaccharide monooxygenases (PMOs) are capable of oxidatively cleaving chitin, cellulose, and hemicelluloses that contain β(1→4) linkages between glucose or substituted glucose units. They are also known collectively as lytic PMOs, or LPMOs, and individually as AA9 (formerly GH61), AA10 (formerly CBM33), and(More)
The filamentous fungus Neurospora crassa is a model laboratory organism, but in nature is commonly found growing on dead plant material, particularly grasses. Using functional genomics resources available for N. crassa, which include a near-full genome deletion strain set and whole genome microarrays, we undertook a system-wide analysis of plant cell wall(More)
Filamentous fungi secrete a wide range of enzymes, including cellulases and hemicellulases, with potential applications in the production of lignocellulosic biofuels. Of the cellulolytic fungi, Hypocrea jecorina (anamorph Trichoderma reesei) is the best characterized in terms of cellulose degradation, but other cellulolytic fungi, such as the model(More)
The role of nitric oxide (NO) as a biological signaling molecule is well established. NO is produced by the nitric oxide synthases (NOSs, EC, a class of heme proteins capable of converting l-arginine to NO and l-citrulline. Despite the large body of knowledge associated with the NOSs, mechanistic details relating to the unique oxidative(More)