William Stafford Noble

Learn More
The MEME Suite web server provides a unified portal for online discovery and analysis of sequence motifs representing features such as DNA binding sites and protein interaction domains. The popular MEME motif discovery algorithm is now complemented by the GLAM2 algorithm which allows discovery of motifs containing gaps. Three sequence scanning(More)
UNLABELLED A motif is a short DNA or protein sequence that contributes to the biological function of the sequence in which it resides. Over the past several decades, many computational methods have been described for identifying, characterizing and searching with sequence motifs. Critical to nearly any motif-based sequence analysis pipeline is the ability(More)
The prediction of regulatory elements is a problem where computational methods offer great hope. Over the past few years, numerous tools have become available for this task. The purpose of the current assessment is twofold: to provide some guidance to users regarding the accuracy of currently available tools in various settings, and to provide a benchmark(More)
We introduce a new sequence-similarity kernel, the spectrum kernel, for use with support vector machines (SVMs) in a discriminative approach to the protein classification problem. Our kernel is conceptually simple and efficient to compute and, in experiments on the SCOP database, performs well in comparison with state-of-the-art methods for homology(More)
A common question within the context of de novo motif discovery is whether a newly discovered, putative motif resembles any previously discovered motif in an existing database. To answer this question, we define a statistical measure of motif-motif similarity, and we describe an algorithm, called Tomtom, for searching a database of motifs with a given query(More)
MOTIVATION During the past decade, the new focus on genomics has highlighted a particular challenge: to integrate the different views of the genome that are provided by various types of experimental data. RESULTS This paper describes a computational framework for integrating and drawing inferences from a collection of genome-wide measurements. Each(More)
One key element in understanding the molecular machinery of the cell is to understand the structure and function of each protein encoded in the genome. A very successful means of inferring the structure or function of a previously unannotated protein is via sequence similarity with one or more proteins whose structure or function is already known. Toward(More)
MOTIVATION Despite advances in high-throughput methods for discovering protein-protein interactions, the interaction networks of even well-studied model organisms are sketchy at best, highlighting the continued need for computational methods to help direct experimentalists in the search for novel interactions. RESULTS We present a kernel method for(More)
We introduce a class of string kernels, called mismatch kernels, for use with support vector machines (SVMs) in a discriminative approach to the protein classification problem. These kernels measure sequence similarity based on shared occurrences of -length subsequences, counted with up to mismatches, and do not rely on any generative model for the positive(More)
Shotgun proteomics uses liquid chromatography–tandem mass spectrometry to identify proteins in complex biological samples. We describe an algorithm, called Percolator, for improving the rate of confident peptide identifications from a collection of tandem mass spectra. Percolator uses semi-supervised machine learning to discriminate between correct and(More)