Learn More
BACKGROUND Diagnosis of acute infection in the critically ill remains a challenge. We hypothesized that circulating leukocyte transcriptional profiles can be used to monitor the host response to and recovery from infection complicating critical illness. METHODOLOGY/PRINCIPAL FINDINGS A translational research approach was employed. Fifteen mice underwent(More)
BACKGROUND The purpose of this study was to further elucidate the role of the vascular smooth muscle cells (SMCs) in abdominal aortic aneurysm (AAA) disease. We hypothesized that that AAA SMCs are unique and actively participate in the process of degrading the aortic matrix. METHODS Whole-genome expression profiles of SMCs from AAAs, nondilated abdominal(More)
OBJECTIVE We hypothesized that circulating leukocyte RNA profiles or “riboleukograms” detect ventilator-associated pneumonia after blunt trauma. SUMMARY BACKGROUND DATA A pilot microarray study of 11 ventilator-associated pneumonia (VAP) patients suggested that 85 leukocyte genes can be used to diagnose VAP. Validation of this gene set to detect VAP was(More)
OBJECTIVE Ventilator-associated pneumonia (VAP) is a significant contributor to intensive care unit (ICU) morbidity and mortality and presents a significant diagnostic challenge. Our hypothesis was that blood RNA expression profiles can be used to track the response to VAP in children, using the same methods that proved informational in adults. DESIGN A(More)
BACKGROUND Age influences outcome of sepsis and septic shock. The mechanism of this age-dependent vulnerability to sepsis remains largely unknown. Because much of the mortality and morbidity associated with sepsis and septic shock is the result of severe derangements in the cardiovascular system, it is possible that the myocardium responds to injury in a(More)
In this paper, we propose a gene regulatory network (GRN) estimation method, which assumes that such networks are typically sparse, using time-series microarray datasets. We represent the regulatory relationships between the genes using weights, with the "net" regulation influence on a gene's expression being the summation of the independent regulatory(More)
Genome wide association studies are central to the evolution of personalized medicine. However, the propensity for single nucleotide polymorphisms (SNPs) to fall outside of genes means that understanding how these polymorphisms alter cellular function requires an expanded view of human genetics. Integrating the study of genome structure (chromosome(More)
The locations of proteins and epigenetic marks on the chromosomal DNA sequence are believed to demarcate the eukaryotic genome into distinct structural and functional domains that contribute to gene regulation and genome organization. However, how these proteins and epigenetic marks are organized in three dimensions remains unknown. Recent advances in(More)
OBJECTIVES Obesity has been demonstrated to alter a number of acute and chronic medical conditions. The effect of obesity on severely injured patients, however, remains incompletely defined. We sought to unravel potential physiologic and genomic alterations induced by obesity in severely injured blunt trauma patients. DESIGN A retrospective review of(More)
Meta-analyses of genome-wide association studies (GWAS) have improved our understanding of the genetic foundations of a number of diseases, including diabetes. However, single nucleotide polymorphisms (SNPs) that are identified by GWAS, especially those that fall outside of gene regions, do not always clearly link to the underlying biology. Despite this,(More)